996 resultados para road transportation
Resumo:
This report addresses the field testing and analysis of those results to establish the behavior of the original Clive Road Bridge that carried highway traffic over Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 1959, shortly after its construction and in 1993, just prior to its demolition. This report presents some of the results from both field tests, finite element predictions of the behavior of aluminum bridge girders, and load distribution studies.
Resumo:
Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost
Resumo:
This report proposes, that for certain types of highway construction projects undertaken by the Iowa Department of Transportation, a scheduling technique commonly referred to as linear scheduling may be more effective than the Critical Path Method scheduling technique that is currently being used. The types of projects that appear to be good candidates for the technique are those projects that have a strong linear orientation. Like a bar chart, this technique shows when an activity is scheduled to occur and like a CPM schedule it shows the sequence in which activities are expected to occur. During the 1992 construction season, the authors worked with an inlay project on Interstate 29 to demonstrate the linear scheduling technique to the Construction Office. The as-planned schedule was developed from the CPM schedule that the contractor had developed for the project. Therefore, this schedule represents what a linear representation of a CPM schedule would look like, and not necessarily what a true linear schedule would look like if it had been the only scheduling technique applied to the project. There is a need to expand the current repertoire of scheduling techniques to address those projects for which the bar chart and CPM may not be appropriate either because of the lack of control information or due to overly complex process for the actual project characteristics. The scheduling approaches used today on transportation projects have many shortcomings for properly modeling the real world constraints and conditions which are encountered. Linear project's predilection for activities with variable production rates, a concept very difficult to handle with the CPM, is easily handled and visualized with the linear technique. It is recommended that work proceed with the refinement of the method of linear scheduling described above and the development of a microcomputer based system for use by the Iowa Department of Transportation and contractors for its implementation. The system will be designed to provide the information needed to adjust schedules in a rational understandable method for monitoring progress on the projects and alerting Iowa Department of Transportation personnel when the contractor is deviating from the plan.
Resumo:
Weekly letting report
Resumo:
This handbook provides a broad, easy to understand reference for temporary traffic control in work zones, addressing the safe and efficient accommodation of all road users: motorists, bicyclists, pedestrians, and those with special needs. When impacting a pedestrian facility, provide ten calendar days advance notification to the local jurisdiction and the National Federation of the Blind of Iowa (www.nfbi.org). The information presented is based on standards and guidance in the 2009 Edition of the Manual on Uniform Traffic Control Devices (MUTCD). References to the MUTCD sign designations in this handbook are shown in parentheses, e.g. (W20-1). Not all the recommendations in this handbook will apply to every circumstance faced by local agencies, and each unique situation may not be addressed. Modifications of the typical applications in this handbook will be required to adapt to specific field conditions. Therefore, use engineering judgment, seeking the advice of experienced professionals and supervisors in difficult and complex interpretations. This handbook can be used as a reference for temporary traffic control in work zones on all city or county roadways. However, always check contract documents and local agency requirements for any pertinent modifications.
Resumo:
Rural intersections account for 30% of crashes in rural areas and 6% of all fatal crashes, representing a significant but poorly understood safety problem. Transportation agencies have traditionally implemented countermeasures to address rural intersection crashes but frequently do not understand the dynamic interaction between the driver and roadway and the driver factors leading to these types of crashes. The Second Strategic Highway Research Program (SHRP 2) conducted a large-scale naturalistic driving study (NDS) using instrumented vehicles. The study has provided a significant amount of on-road driving data for a range of drivers. The present study utilizes the SHRP 2 NDS data as well as SHRP 2 Roadway Information Database (RID) data to observe driver behavior at rural intersections first hand using video, vehicle kinematics, and roadway data to determine how roadway, driver, environmental, and vehicle factors interact to affect driver safety at rural intersections. A model of driver braking behavior was developed using a dataset of vehicle activity traces for several rural stop-controlled intersections. The model was developed using the point at which a driver reacts to the upcoming intersection by initiating braking as its dependent variable, with the driver’s age, type and direction of turning movement, and countermeasure presence as independent variables. Countermeasures such as on-pavement signing and overhead flashing beacons were found to increase the braking point distance, a finding that provides insight into the countermeasures’ effect on safety at rural intersections. The results of this model can lead to better roadway design, more informed selection of traffic control and countermeasures, and targeted information that can inform policy decisions. Additionally, a model of gap acceptance was attempted but was ultimately not developed due to the small size of the dataset. However, a protocol for data reduction for a gap acceptance model was determined. This protocol can be utilized in future studies to develop a gap acceptance model that would provide additional insight into the roadway, vehicle, environmental, and driver factors that play a role in whether a driver accepts or rejects a gap.
Resumo:
This document summarizes the discussion and findings of the 4th workshop held on October 27–28, 2015 in Frankfort, Kentucky as part of the Technology Transfer Intelligent Compaction Consortium (TTICC) Transportation Pooled Fund (TPF-5(233)) study. The TTICC project is led by the Iowa Department of Transportation (DOT) and partnered by the following state DOTs: California, Georgia, Iowa, Kentucky, Missouri, Ohio, Pennsylvania, Virginia, and Wisconsin. The workshop was hosted by the Kentucky Transportation Cabinet and was organized by the Center for Earthworks Engineering Research (CEER) at Iowa State University of Science and Technology. The objective of the workshop was to generate a focused discussion to identify the research, education, and implementation goals necessary for advancing intelligent compaction for earthworks and asphalt. The workshop consisted of a review of the TTICC goals, state DOT briefings on intelligent compaction implementation activities in their state, voting and brainstorming sessions on intelligent compaction road map research and implementation needs, and identification of action items for TTICC, industry, and Federal Highway Administration (FHWA) on each of the road map elements to help accelerate implementation of the technology. Twenty-three attendees representing the state DOTs participating in this pooled fund study, the FHWA, Iowa State University, University of Kentucky, and industry participated in this workshop.
Resumo:
The Iowa Department of Transportation Office of Research & Analytics has created this Guide to help researchers and contractors of the Iowa DOT attain compliance with Federal and Iowa DOT Public Access Policies for transportation-related research publications and datasets. This guide provides direction for filling out the data management plan template (also attached to this record) that will help satisfy Iowa DOT and U.S. DOT requirements.
A Progress Report on Treating Loess, Fine Sands and Soft Limestones with Liquid Binders, HR-20, 1954
Resumo:
Certain areas of Iowa abound in loess, others contain soft limestones that are readily and cheaply available, and a large portion of the state is underlaid with sand. None of these materials is considered suitable in present practices for use in all-weather road construction. The loess is too fine and too difficult to handle; the limestones are considered too soft, and some of the harder ones unsound for this use; the sands are not naturally of the desired gradation and do not lend themselves to blending into satisfactory gradations. The purpose of this project is, therefore, to study and develop means and to determine the feasibility of using these materials, loess, fine sand, and soft limestones, either separately or in combinations in conjunction with liquid binders to produce paving mixtures applicable for all-weather road construction. Also included in the project was the development of methods of processing any of these materials, if necessary, to make them suitable for the desired purpose
Resumo:
Provision of left turn lanes is a major problem which lacks an objective approach. Various techniques and procedures in use have been reviewed. Traffic characteristics at typical Iowa intersections have been measured. A rational approach for inclusion of a left turn lane has been developed, based on relating the benefits to the road user to the cost of providing the added turing lane. An analysis of field data gathered under this project indicates that the use of theoretical distribution to describe vehicle headways is not applicable to rural Iowa two lane roads. As an alternate approach the mass of field data gathered were examined using multiple regression techniques to yield equations for predicting stops and delays. The benefit-cost ratio technique is recommended as the criterion for decision making.
Bond Contribution to Whitetopping Performance on Low Volume Roads, Construction Report, HR-341, 1993
Resumo:
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new Portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County, Iowa was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. As a part of these bonding techniques, two pavement thicknesses were placed; two different concrete proportions were used; and two sections were planed to a uniform cross-slope.
Resumo:
Compendium of papers presented at the Transportation Scholars Conference in 2000.
Resumo:
Weekly letting report
Resumo:
The purpose of this manual is to provide guidelines for low water stream crossings (LWSC). Rigid criteria for determining the applicability of a LWSC to a given site are not established nor is a 'cookbook" procedure for designing a LWSC presented. Because conditions vary from county to county and from site to site within the county, judgment must be applied to the suggestions contained in this manual. A LWSC is a stream crossing that will be flooded periodically and closed to traffic. Carstens (1981) has defined a LWSC as "a ford, vented ford (one having some number of culvert pipes), low water bridge, or other structure that is designed so that its hydraulic capacity will be insufficient one or more times during a year of normal rainfall." In this manual, LWSC are subdivided into these same three main types: unvented fords, vented fords and low water bridges. Within the channel banks, an unvented ford can have its road profile coincident with the stream bed or can have its profile raised some height above the stream bed.
Resumo:
The purposes of this report (Phase II of the project) are to specify in mathematical form the individual modules of the conceptual model developed in Phase I, to identify and evaluate sources of data for the model set, and to develop the transport networks necessary to support the models.