969 resultados para rhoptry protein 2
Resumo:
Indirect enzyme-linked immunosorbent assays (ELISAs) based on recombinant major surface protein 5 (rMSP5) and initial body (IB) antigens from a Brazilian isolate of Anaplasma marginale were developed to detect antibodies against this rickettsia in cattle. Both tests showed the same sensitivity (98.2%) and specificities (100% for rMSP5 and 93.8% for IB ELISA) which did not differ statistically. No cross-reactions were detected with Babesia bigemina antibodies, but 5 (rMSP5 ELISA) to 15% (IB ELISA) of cross-reactions were detected with B. bovis antibodies. However, such difference was not statistically significant. Prevalences of seropositive crossbred beef cattle raised extensively in Miranda county, state of Mato Grosso do Sul, Brazil, were 78.1% by rMSP5 ELISA and 79.7% by IB ELISA. In the analysis of sera from dairy calves naturally-infected with A. marginale, the dynamics of antibody production was very similar between both tests, with maternal antibodies reaching the lowest levels at 15-30 days, followed by an increase in the mean optical densities in both ELISAs, suggesting the development of active immunity against A. marginale. Results showed that all calves were seropositive by one-year old, characterizing a situation of enzootic stability. The similar performances of the ELISAs suggest that both tests can be used in epidemiological surveys for detection of antibodies to A. marginale in cattle.
Resumo:
Purpose/Objective: Histone deacetylases (HDACs) deacetylate histones and transcriptional regulators thereby affecting numerous biological functions. Seven mammalian sirtuins (SIRT1-7) constitute the NAD-dependent class III subfamily of HDACs. Sirtuins are the center of great interest due to their regulatory role in the control of metabolism, ageing and age-related diseases. Up to now, little is known about the influence of sirtuins on immune responses, and nothing about the role of SIRT2. The aim of the study was to analyze the influence of SIRT2 knockout on immune cell development and innate immune responses in vitro and in vivo. Materials and methods: SIRT2 germline knockout were produced on a C57BL/6J background. The cellularity of thymus and spleen was assessed by flow cytometry (n = 3). Bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) and splenocytes were stimulated with LPS, Pam3CSK4 lipopeptide, CpG ODN, E. coli, S. aureus, TSST-1, SEB, anti-CD3+ CD28 and concanavalin A (n = 3_8). TNF, IL-2, IL-6, IL-12p40 and IFNc production, SIRT1_7 and CD40 expression, and proliferation were quantified by real time-PCR, ELISA, flow cytometry and H3-thymidine incorporation. Mice (n = 6_16) were challenged with LPS, TNF/D-galactosamine, E. coli and K. pneumonia titrated to cause either mild or severe infections or shock. Blood was collected to quantify cytokines and bacteria. Mortality was checked regularly. Results: SIRT2 is the most expressed sirtuin in macrophages and myeloid DCs. To test whether SIRT2 impacts on innate immune responses, we generated SIRT2 germline knockout mice. SIRT2-/- mice born at the expected Mendelian ratio and develop normally. The proportions and absolute numbers of DN1-4, DP and SP thymocytes, and of T-cells (DN and SP, naı¨ve and memory), B-cells (immature and mature), DCs (cDCs and pDCs) and granulocytes in the spleen are similar in SIRT2+/+ and SIRT2-/- mice. SIRT2+/+ and SIRT2-/- BMDMs, BMDCs and splenocytes produce cytokines (RNA and protein), upregulate CD40, and proliferate to the same extent. SIRT2+/+ and SIRT2-/- mice respond similarly (cytokine blood levels, bacterial counts and mortality) to non-severe and lethal endotoxemia, E. coli peritonitis, K. pneumonia pneumonia and TNF-induced shock. Conclusions: SIRT2 knockout has no dramatic impact on the development of immune cells and on innate immune responses in vitro and in vivo. Considering that SIRT2 may participate to control metabolic homeostasis, we are currently assessing the impact of SIRT2 deficiency on innate immune responses under metabolic stress.
Resumo:
Exogenous oxidized cholesterol disturbs both lipid metabolism and immune functions. Therefore, it may perturb these modulations with ageing. Effects of the dietary protein type on oxidized cholesterol-induced modulations of age-related changes in lipid metabolism and immune function was examined using differently aged (4 weeks versus 8 months) male Sprague-Dawley rats when casein, soybean protein or milk whey protein isolate (WPI) was the dietary protein source, respectively. The rats were given one of the three proteins in diet containing 0.2% oxidized cholesterols mixture. Soybean protein, as compared with the other two proteins, significantly lowered both the serum thiobarbituric acid reactive substances value and cholesterol, whereas it elevated the ratio of high density lipoprotein-cholesterol/cholesterol in young rats, but not in adult. Moreover, soybean protein, but not casein and WPI, suppressed the elevation of Delta6 desaturation indices of phospholipids in both liver and spleen, particularly in young. On the other hand, WPI, compared to the other two proteins, inhibited the leukotriene B4 production of spleen, irrespective of age. Soybean protein reduced the ratio of CD4(+)/CD8(+) T-cells in splenic lymphocytes. Therefore, the levels of immunoglobulin (Ig)A, IgE and IgG in serum were lowered in rats given soybean protein in both age groups except for IgA in adult, although these observations were not shown in rats given other proteins. Thus, various perturbations of lipid metabolism and immune function caused by oxidized cholesterol were modified depending on the type of dietary protein. The moderation by soybean protein on the change of lipid metabolism seems to be susceptible in young rats whose homeostatic ability is immature. These observations may be exerted through both the promotion of oxidized cholesterol excretion to feces and the change of hormonal release, while WPI may suppress the disturbance of immune function by oxidized cholesterol in both ages. This alleviation may be associated with a large amount of lactoglobulin in WPI. These results thus showed a possibility that oxidized cholesterol-induced perturbations of age-related changes of lipid metabolism and immune function can be moderated by both the selection and combination of dietary protein.
Resumo:
The aim of this study was to determine the prevalence of malaria infection and antibodies against the repetitive epitopes of the circumsporozoite (CS) proteins of Plasmodium falciparum, P. malariae, P. vivax VK210, P. vivax VK247, and P. vivax-like in individuals living in the states of Rondônia, Pará, Mato Grosso, Amazonas, and Acre. Active malaria transmission was occurring in all studied sites, except in Acre. P. falciparum was the predominant species in Pará and Rondônia and P. vivax in Mato Grosso. Infection by P. malariae was low but this Plasmodium species was detected in Rondônia (3.5%), Mato Grosso (2.5%), and Pará (0.8%). High prevalence and levels of serological reactivity against the CS repeat peptides of P. falciparum were detected in Rondônia (93%) and Pará (85%). Sera containing antibodies against the CS repeat of P. malariae occurred more frequently in Rondônia (79%), Pará (76%), and Amazonas (68%). Antibodies against the repeat epitope of the standard CS protein of P. vivax VK210, P. vivax VK247, and P. vivax-like were more frequent in Rondônia, Pará, and Mato Grosso. The high frequency of reactions to P. malariae in most of the areas suggests that the infection by this Plasmodium species has been underestimated in Brazil.
Resumo:
Introduction: CD22 is expressed on most B-non-Hodgkin lymphomas (NHL); inotuzumab ozogamicin (INO) is an anti-CD22 antibody conjugated to calicheamicin. This study evaluated the safety and tolerability of INO plus R-CVP in patients (pts) with relapsed/refractory CD22+ B-NHL. Efficacy data were also collected. Methods: Part 1 of this open-label study identified a maximum tolerated dose (MTD) of INO 0.8mg/m,2 on day 2 plus R-CVP (rituximab 375mg/m,2 cyclophosphamide 750mg/m,2 and vincristine 1.4mg/m,2 on day 1; prednisone 40mg/m,2 on days 1-5) every 21 days. Subsequently, pts were enrolled in the MTD confirmation cohort (part 2, n = 10), which required a dose-limiting toxicity rate of <33% in cycle 1 and <4 pts discontinuing prior to cycle 3 due to an adverse event (AE) in the MTD expansion cohort (part 3, n = 22), which explored preliminary activity. Results: Parts 2 and 3 enrolled 32 pts: 16 pts with diffuse large B-cell lymphoma, 15 with follicular lymphoma and one with mantle cell lymphoma. Median age was 64.5 years (range 44-81 years); 34% of pts had 1 prior regimen, 34% had 2, 28% had ≥3 and 3% had none (median 2; range 0-6).Median treatment duration was five cycles (range 1-6). Part 2 confirmed the MTD as standard dose R-CVP plus INO 0.8mg/m,2; 2/10 pts had a dose-limiting toxicity (grade 3 increased ALT/AST, grade 4 neutropenia requiring G-CSF). One pt discontinued because of an AE prior to cycle 3. Common treatment-related AEs were thrombocytopenia (78%), neutropenia (66%), fatigue (50%), leukopenia (50%), nausea (41%) and lymphopenia (38%); common grade 3/4 AEs were neutropenia (63%), thrombocytopenia (53%), leukopenia (38%) and lymphopenia (31%). There was one case of treatment-related fatal pneumonia with grade 4 neutropenia. Ten pts discontinued treatment due to AEs; thrombocytopenia/delayed platelet recovery was the leading cause (grade 1/2, n = 6; grade 3/4, n = 3). Objective response rate (ORR) was 77% (n = 24/31 evaluable pts), including 26% (n=8/31) with complete response (CR); three pts had stable disease. Of the pts with follicular lymphoma, ORR was 100% (n = 15/15), including seven pts with CR. Of the pts with diffuse large B-cell lymphoma, ORR was 60% (n = 9/16), including one pt with CR. Conclusions: Results suggest that INOplus R-CVP has acceptable toxicity and promising activity in relapsed/refractory CD22+ B-NHL. The most common grade 3/4 AEs were hematologic. Follow-up for progression-free and overall survival is ongoing.
Resumo:
Amplification of the epidermal growth factor receptor (EGFR) or expression of its constitutively activated mutant, DeltaEGFR(2-7), in association with the inactivation of the INK4a/Arf gene locus is a frequent alteration in human glioblastoma. The notion of a cooperative effect between these two alterations has been demonstrated in respective mouse brain tumor models including our own. Here, we investigated underlying molecular mechanisms in early passage cortical astrocytes deficient for p16(INK4a)/p19(Arf) or p53, respectively, with or without ectopic expression of DeltaEGFR(2-7). Targeting these cells with the specific EGFR inhibitor tyrphostin AG1478 revealed that phosphorylation of ERK was only abrogated in the presence of an intact INK4a/Arf gene locus. The sensitivity to inhibit ERK phosphorylation was independent of ectopic expression of DeltaEGFR(2-7) and independent of the TP53 status. This resistance to downregulate the MAPK pathway in the absence of INK4a/Arf was confirmed in cell lines derived from our mouse glioma models with the respective initial genetic alterations. Thus, deletion of INK4a/Arf appears to keep ERK in its active, phosphorylated state insensitive to an upstream inhibitor specifically targeting EGFR/DeltaEGFR(2-7). This resistance may contribute to the cooperative tumorigenic effect selected for in human glioblastoma that may be of crucial clinical relevance for treatments specifically targeting EGFR/DeltaEGFR(2-7) in glioblastoma patients.
Resumo:
A gene, named AtECH2, has been identified in Arabidopsis thaliana to encode a monofunctional peroxisomal enoyl-CoA hydratase 2. Homologues of AtECH2 are present in several angiosperms belonging to the Monocotyledon and Dicotyledon classes, as well as in a gymnosperm. In vitro enzyme assays demonstrated that AtECH2 catalyzed the reversible conversion of 2E-enoyl-CoA to 3R-hydroxyacyl-CoA. AtECH2 was also demonstrated to have enoyl-CoA hydratase 2 activity in an in vivo assay relying on the synthesis of polyhydroxyalkanoate from the polymerization of 3R-hydroxyacyl-CoA in the peroxisomes of Saccharomyces cerevisiae. AtECH2 contained a peroxisome targeting signal at the C-terminal end, was addressed to the peroxisome in S. cerevisiae, and a fusion protein between AtECH2 and a fluorescent protein was targeted to peroxisomes in onion cells. AtECH2 gene expression was strongest in tissues with high beta-oxidation activity, such as germinating seedlings and senescing leaves. The contribution of AtECH2 to the degradation of unsaturated fatty acids was assessed by analyzing the carbon flux through the beta-oxidation cycle in plants that synthesize peroxisomal polyhydroxyalkanoate and that were over- or underexpressing the AtECH2 gene. These studies revealed that AtECH2 participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2E-enoyl-CoA for further degradation through the core beta-oxidation cycle.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.
Resumo:
The HER-2/ErbB-2 oncoprotein is overexpressed in human breast and ovarian adenocarcinomas and is clearly associated with the malignant phenotype. Although no specific ligand for this receptor has been positively identified, ErbB-2 was shown to play a central role in a network of interactions with the related ErbB-1, ErbB-3 and ErbB-4 receptors. We have selected new peptides binding to ErbB-2 extracellular domain protein (ECD) by screening 2 newly developed constrained and unconstrained random hexapeptide phage libraries. Out of 37 phage clones, which bound specifically to ErbB-2 ECD, we found 6 constrained and 10 linear different hexapeptide sequences. Among the latter, 5 consensus motifs, all with a common methionine and a positively charged residue at positions 1 and 3, respectively, were identified. Furthermore, 3 representative hexapeptides were fused to a coiled-coil pentameric recombinant protein to form the so-called peptabodies recently developed in our laboratory. The 3 peptabodies bound specifically to the ErbB-2 ECD, as determined by enzyme-linked immunosorbent assay and BIAcore analysis and to tumor cells overexpressing ErbB-2, as shown by flow cytometry. Interestingly, one of the free selected linear peptides and all 3 peptabodies inhibited the proliferation of tumor cells overexpressing ErbB-2. In conclusion, a novel type of ErbB-2-specific ligand is described that might complement presently available monoclonal antibodies.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
Rhodnius prolixus is the main Trypanosoma rangeli vector in several Latin-American countries and is susceptible to infection with KP1(+) strains; however, it presents an invasion-resistant response to KP1(-) strains. The present work has identified a trypanolytic protein against T. rangeli KP1(-) in the R. prolixus hemolymph which was fractioned with ammonium sulfate (following dialysis). The results revealed a protein component which did not depend on divalent cations for its biological function whilst keeping its trypanolytic activity at temperatures ranging from -20ºC to 37ºC, at 7.0 to 10.5 pH. The protein was partially purified by gel filtration chromatography and ionic exchange chromatography. The major component presented a molecular weight of around 79 kDa and an isoelectric point between 4.9 and 6.3 and may be directly related to hemolymph trypanolytic activity against T. rangeli KP1(-) populations.
Resumo:
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Resumo:
Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans, an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the C. albicans MNS1 gene into Escherichia coli, then expressed and purified the enzyme. The recombinant Mns1 was capable of converting a Man9GlcNAc2 N-glycan core into Man8GlcNAc2 isomer B, but failed to process a Man5GlcNAc2-Asn N-oligosaccharide. These properties are similar to those displayed by Mns1 purified from C. albicansmembranes and strongly suggest that the enzyme is an ±1,2-mannosidase that is localised to the endoplasmic reticulum and involved in the processing of N-linked mannans. Polyclonal antibodies specifically raised against recombinant Mns1 also immunoreacted with the soluble ±1,2-mannosidases E-I and E-II, indicating that Mns1 could share structural similarities with both soluble enzymes. Due to the high degree of similarity between the members of family 47, it is conceivable that these antibodies may recognise ±1,2-mannosidases in other biological systems as well.
Resumo:
Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.
Resumo:
We read with interest the article by Qiu et al (Thorax 2007;62:475–82). In this paper, neutrophils and eosinophils were identified using mouse anti-human neutrophil elastase and anti-eosinophil cationic protein (ECP), both monoclonal antibodies (mAbs). mAbs against ECP have been used to detect total eosinophils, but immunostaining techniques evidenced that the number of ECP+ cells was higher than the number of eosinophils.1 Recent studies show that ECP is not only a distinctive eosinophil protein, but has been found in neutrophils.1–3