918 resultados para renal insufficiency
Resumo:
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objective: To evaluate the anatomical and functional renal alterations and the association with post-traumatic arterial hypertension. Methods: The studied population included patients who sustained high grades renal injury (grades III to V) successfully non-operative management after staging by computed tomography over a 16-year period. Beyond the review of medical records, these patients were invited to the following protocol: clinical and laboratory evaluation, abdominal computed tomography, magnetic resonance angiography, DMSA renal scintigraphy, and ambulatory blood pressure monitoring. The hypertensive patients also were submitted to dynamic renal scintigraphy (Tc-99m EC), using captopril stimulation to verify renal vascular etiology. Results: Of the 31 patients, there were thirteen grade III, sixteen grade IV (nine lacerations, and seven vascular lesions), and two grade V injuries. All the patients were asymptomatic and an average follow up post-injury of 6.4 years. None had abnormal BUN or seric creatinine. The percentage of renal volume reduction correlates with the severity as defined by OIS. There was no evidence of renal artery stenosis in Magnetic Resonance angiography (MRA). DMSA scanning demonstrated a decline in percentage of total renal function corresponding to injury severity (42.2 +/- 5.5% for grade III, 35.3 +/- 12.8% for grade IV, 13.5 +/- 19.1 for grade V). Six patients (19.4%) had severe compromised function (< 30%). There was statistically significant difference in the decrease in renal function between parenchymal and vascular causes for grade IV injuries (p < 0.001). The 24-hour ambulatory blood pressure monitoring detected nine patients (29%) with post-traumatic hypertension. All the patients were male, mean 35.6 years, 77.8 % had a familial history of arterial hypertension, 66.7% had grade III renal injury, and average post-injury time was 7.8 years. Seven patients had negative captopril renography. Conclusions: Late results of renal function after conservative treatment of high grades renal injuries are favorable, except for patients with grades IV with vascular injuries and grade V renal injuries. Moreover, arterial hypertension does not correlate with the grade of renal injury or reduction of renal function.
Resumo:
Background and Objectives: Patients who survive acute kidney injury (AKI), especially those with partial renal recovery, present a higher long-term mortality risk. However, there is no consensus on the best time to assess renal function after an episode of acute kidney injury or agreement on the definition of renal recovery. In addition, only limited data regarding predictors of recovery are available. Design, Setting, Participants, & Measurements: From 1984 to 2009, 84 adult survivors of acute kidney injury were followed by the same nephrologist (RCRMA) for a median time of 4.1 years. Patients were seen at least once each year after discharge until end stage renal disease (ESRD) or death. In each consultation serum creatinine was measured and glomerular filtration rate estimated. Renal recovery was defined as a glomerular filtration rate value >= 60 mL/min/1.73 m2. A multiple logistic regression was performed to evaluate factors independently associated with renal recovery. Results: The median length of follow-up was 50 months (30-90 months). All patients had stabilized their glomerular filtration rates by 18 months and 83% of them stabilized earlier: up to 12 months. Renal recovery occurred in 16 patients (19%) at discharge and in 54 (64%) by 18 months. Six patients died and four patients progressed to ESRD during the follow up period. Age (OR 1.09, p < 0.0001) and serum creatinine at hospital discharge (OR 2.48, p = 0.007) were independent factors associated with non renal recovery. The acute kidney injury severity, evaluated by peak serum creatinine and need for dialysis, was not associated with non renal recovery. Conclusions: Renal recovery must be evaluated no earlier than one year after an acute kidney injury episode. Nephrology referral should be considered mainly for older patients and those with elevated serum creatinine at hospital discharge.