944 resultados para refinement calculus
Resumo:
The actor message-passing model of concurrent computation has inspired new ideas in the areas of knowledge-based systems, programming languages and their semantics, and computer systems architecture. The model itself grew out of computer languages such as Planner, Smalltalk, and Simula, and out of the use of continuations to interpret imperative constructs within A-calculus. The mathematical content of the model has been developed by Carl Hewitt, Irene Greif, Henry Baker, and Giuseppe Attardi. This thesis extends and unifies their work through the following observations. The ordering laws postulated by Hewitt and Baker can be proved using a notion of global time. The most general ordering laws are in fact equivalent to an axiom of realizability in global time. Independence results suggest that some notion of global time is essential to any model of concurrent computation. Since nondeterministic concurrency is more fundamental than deterministic sequential computation, there may be no need to take fixed points in the underlying domain of a power domain. Power domains built from incomplete domains can solve the problem of providing a fixed point semantics for a class of nondeterministic programming languages in which a fair merge can be written. The event diagrams of Greif's behavioral semantics, augmented by Baker's pending events, form an incomplete domain. Its power domain is the semantic domain in which programs written in actor-based languages are assigned meanings. This denotational semantics is compatible with behavioral semantics. The locality laws postulated by Hewitt and Baker may be proved for the semantics of an actor-based language. Altering the semantics slightly can falsify the locality laws. The locality laws thus constrain what counts as an actor semantics.
Resumo:
Electrical circuit designers seldom create really new topologies or use old ones in a novel way. Most designs are known combinations of common configurations tailored for the particular problem at hand. In this thesis I show that much of the behavior of a designer engaged in such ordinary design can be modelled by a clearly defined computational mechanism executing a set of stylized rules. Each of my rules embodies a particular piece of the designer's knowledge. A circuit is represented as a hierarchy of abstract objects, each of which is composed of other objects. The leaves of this tree represent the physical devices from which physical circuits are fabricated. By analogy with context-free languages, a class of circuits is generated by a phrase-structure grammar of which each rule describes how one type of abstract object can be expanded into a combination of more concrete parts. Circuits are designed by first postulating an abstract object which meets the particular design requirements. This object is then expanded into a concrete circuit by successive refinement using rules of my grammar. There are in general many rules which can be used to expand a given abstract component. Analysis must be done at each level of the expansion to constrain the search to a reasonable set. Thus the rule of my circuit grammar provide constraints which allow the approximate qualitative analysis of partially instantiated circuits. Later, more careful analysis in terms of more concrete components may lead to the rejection of a line of expansion which at first looked promising. I provide special failure rules to direct the repair in this case.
Resumo:
null RAE2008
Resumo:
Gough, John; Belavkin, V.P.; Smolianov, O.G., (2005) 'Hamilton?Jacobi?Bellman equations for quantum optimal feedback control', Journal of Optics B: Quantum and Semiclassical Optics 7 pp.S237-S244 RAE2008
Resumo:
Pint?r, B.; Erd?lyi, R.; Goossens, M., Global oscillations in a magnetic solar model. II. Oblique propagation, Astronomy and Astrophysics, Volume 466, Issue 1, April IV 2007, pp.377-388 Pint?r, B.; Erd?lyi, R.; Goossens, M., (2007) 'Global oscillations in a magnetic solar model II. Oblique propagation', Astronomy and Astrophysics 466(1) pp.377-388 RAE2008
Resumo:
Wydział Matematyki i Informatyki: Zakład Lingwistyki Informatycznej i Sztucznej Inteligencji
Resumo:
This study explores the effectiveness of a Church-based recovery program for the mentally ill in Korea where many Christian communities view mental illness as evidence of sin. Building on theological and psychological literature, an empirical study was conducted with participants in the alternative program of the Han-ma-um community. Data analysis revealed that this program, which views mental disorders as illness rather than sin, helps participants build self-respect and enables families to provide support as they move toward recovery. Based on this empirical examination, recommendations for refinement and expansion of the program and avenues for future research are proposed.
Resumo:
This report presents an algorithm, and its implementation, for doing type inference in the context of Quasi-Static Typing (QST) ["Quasy-static Typing." Satish Thatte Proc. ACM Symp. on Principles of Programming Languages, 1988]. The package infers types a la "QST" for the simply typed λ-calculus.
Resumo:
Two new notions of reduction for terms of the λ-calculus are introduced and the question of whether a λ-term is beta-strongly normalizing is reduced to the question of whether a λ-term is merely normalizing under one of the new notions of reduction. This leads to a new way to prove beta-strong normalization for typed λ-calculi. Instead of the usual semantic proof style based on Girard's "candidats de réductibilité'', termination can be proved using a decreasing metric over a well-founded ordering in a style more common in the field of term rewriting. This new proof method is applied to the simply-typed λ-calculus and the system of intersection types.
Resumo:
The Science of Network Service Composition has clearly emerged as one of the grand themes driving many of our research questions in the networking field today [NeXtworking 2003]. This driving force stems from the rise of sophisticated applications and new networking paradigms. By "service composition" we mean that the performance and correctness properties local to the various constituent components of a service can be readily composed into global (end-to-end) properties without re-analyzing any of the constituent components in isolation, or as part of the whole composite service. The set of laws that would govern such composition is what will constitute that new science of composition. The combined heterogeneity and dynamic open nature of network systems makes composition quite challenging, and thus programming network services has been largely inaccessible to the average user. We identify (and outline) a research agenda in which we aim to develop a specification language that is expressive enough to describe different components of a network service, and that will include type hierarchies inspired by type systems in general programming languages that enable the safe composition of software components. We envision this new science of composition to be built upon several theories (e.g., control theory, game theory, network calculus, percolation theory, economics, queuing theory). In essence, different theories may provide different languages by which certain properties of system components can be expressed and composed into larger systems. We then seek to lift these lower-level specifications to a higher level by abstracting away details that are irrelevant for safe composition at the higher level, thus making theories scalable and useful to the average user. In this paper we focus on services built upon an overlay management architecture, and we use control theory and QoS theory as example theories from which we lift up compositional specifications.
Resumo:
System F is the well-known polymorphically-typed λ-calculus with universal quantifiers ("∀"). F+η is System F extended with the eta rule, which says that if term M can be given type τ and M η-reduces to N, then N can also be given the type τ. Adding the eta rule to System F is equivalent to adding the subsumption rule using the subtyping ("containment") relation that Mitchell defined and axiomatized [Mit88]. The subsumption rule says that if M can be given type τ and τ is a subtype of type σ, then M can be given type σ. Mitchell's subtyping relation involves no extensions to the syntax of types, i.e., no bounded polymorphism and no supertype of all types, and is thus unrelated to the system F≤("F-sub"). Typability for F+η is the problem of determining for any term M whether there is any type τ that can be given to it using the type inference rules of F+η. Typability has been proven undecidable for System F [Wel94] (without the eta rule), but the decidability of typability has been an open problem for F+η. Mitchell's subtyping relation has recently been proven undecidable [TU95, Wel95b], implying the undecidability of "type checking" for F+η. This paper reduces the problem of subtyping to the problem of typability for F+η, thus proving the undecidability of typability. The proof methods are similar in outline to those used to prove the undecidability of typability for System F, but the fine details differ greatly.
Resumo:
We consider type systems that combine universal types, recursive types, and object types. We study type inference in these systems under a rank restriction, following Leivant's notion of rank. To motivate our work, we present several examples showing how our systems can be used to type programs encountered in practice. We show that type inference in the rank-k system is decidable for k ≤ 2 and undecidable for k ≥ 3. (Similar results based on different techniques are known to hold for System F, without recursive types and object types.) Our undecidability result is obtained by a reduction from a particular adaptation (which we call "regular") of the semi-unification problem and whose undecidability is, interestingly, obtained by methods totally different from those used in the case of standard (or finite) semi-unification.
Resumo:
The isomorphisms holding in all models of the simply typed lambda calculus with surjective and terminal objects are well studied - these models are exactly the Cartesian closed categories. Isomorphism of two simple types in such a model is decidable by reduction to a normal form and comparison under a finite number of permutations (Bruce, Di Cosmo, and Longo 1992). Unfortunately, these normal forms may be exponentially larger than the original types so this construction decides isomorphism in exponential time. We show how using space-sharing/hash-consing techniques and memoization can be used to decide isomorphism in practical polynomial time (low degree, small hidden constant). Other researchers have investigated simple type isomorphism in relation to, among other potential applications, type-based retrieval of software modules from libraries and automatic generation of bridge code for multi-language systems. Our result makes such potential applications practically feasible.
Resumo:
Abstract: The Ambient Calculus was developed by Cardelli and Gordon as a formal framework to study issues of mobility and migrant code. We consider an Ambient Calculus where ambients transport and exchange programs rather that just inert data. We propose different senses in which such a calculus can be said to be polymorphically typed, and design accordingly a polymorphic type system for it. Our type system assigns types to embedded programs and what we call behaviors to processes; a denotational semantics of behaviors is then proposed, here called trace semantics, underlying much of the remaining analysis. We state and prove a Subject Reduction property for our polymorphically typed calculus. Based on techniques borrowed from finite automata theory, type-checking of fully type-annotated processes is shown to be decidable; the time complexity of our decision procedure is exponential (this is a worst-case in theory, arguably not encountered in practice). Our polymorphically-typed calculus is a conservative extension of the typed Ambient Calculus originally proposed by Cardelli and Gordon.
Resumo:
The heterogeneity and open nature of network systems make analysis of compositions of components quite challenging, making the design and implementation of robust network services largely inaccessible to the average programmer. We propose the development of a novel type system and practical type spaces which reflect simplified representations of the results and conclusions which can be derived from complex compositional theories in more accessible ways, essentially allowing the system architect or programmer to be exposed only to the inputs and output of compositional analysis without having to be familiar with the ins and outs of its internals. Toward this end we present the TRAFFIC (Typed Representation and Analysis of Flows For Interoperability Checks) framework, a simple flow-composition and typing language with corresponding type system. We then discuss and demonstrate the expressive power of a type space for TRAFFIC derived from the network calculus, allowing us to reason about and infer such properties as data arrival, transit, and loss rates in large composite network applications.