987 resultados para reduced nicotinamide adenine dinucleotide phosphate oxidase
Resumo:
The Olsen method is an indicator of plant-available phosphorus (P). The effect of time and temperature on residual phosphate in soils was measured using the Olsen method in a pot experiment. Four soils were investigated: two from Pakistan and one each from England (calcareous) and Colombia (acidic). Two levels of residual phosphate were developed in each soil after addition of phosphate by incubation at either 10degreesC or 45degreesC. The amount of phosphate added was based on the P maximum of each soil, calculated using the Langmuir equation. Rvegrass was used as the test crop. The pooled data for the four soils incubated at 10degreesC showed good correlation between Olsen P and dry matter yield or P uptake (r(2) = 0.85 and 0.77, respectively), whereas at 45 degreesC, each soil had its own relationship and pooled data did not show correlation of Olsen P with dry matter yield or P uptake. When the data at both temperatures were pooled, Olsen P was a good indicator of yield and uptake for the English soil. For the Pakistani soils, Olsen P after 45 degreesC treatment was an underestimate relative to the 10 degreesC data and for the Colombian soil it was an overestimate. The reasons for these differences need to be explored further before high temperature incubation can be used to simulate long-term changes in the field.
Resumo:
A laboratory incubation experiment was conducted to evaluate the soil factors that influence the dissolution of two phosphate rocks (PRs) of different reactivity (Gafsa, GPR, reactive PR; and Togo-Hahotoe, HPR, low reactivity PR) in seven agricultural soils from Cameroon having variable phosphorus (P)- sorption capacities, organic carbon (C) contents, and exchangeable acidities. Ground PR was mixed with the soils at a rate of 500 mg P kg 21 soil and incubated at 30 degrees C for 85 days. Dissolution of the PRs was determined at various intervals using the Delta NaOH-P method ( the difference of the amount of P extracted by 0.5 M NaOH between the PR-treated soils and the control). Between 4 and 27% of HPR and 33 and 50% of GPR were dissolved in the soils. Calcium (Ca) saturation of cation exchange sites and proton supply strongly affected PR dissolution in these soils. Acid soils with pH-(H2O), < 5 (NKL, ODJ, NSM, MTF) dissolved more phosphate rock than those with pH-(H2O) > 5 (DSC, FGT, BAF). However, the lack of a sufficient Ca sink in the former constrained the dissolution of both PRs. The dissolution of GPR in the slightly acidic soils was limited by increase in Ca saturation and that of HPR was constrained by limited supply in protons. Generally, the dissolution of GPR was higher than that of HPR for each soil. The kinetics of dissolution of PR in the soils was best described by the power function equation P At B. More efficient use of PR in these soils can be achieved by raising the soil cation exchange capacity, thereby increasing the Ca sink size. This could be done by amending such soils with organic materials.
Resumo:
Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.
Resumo:
The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Anhedonia, the loss of pleasure or interest in previously rewarding stimuli, is a core feature of major depression. While theorists have argued that anhedonia reflects a reduced capacity to experience pleasure, evidence is mixed as to whether anhedonia is caused by a reduction in hedonic capacity. An alternative explanation is that anhedonia is due to the inability to sustain positive affect across time. Using positive images, we used an emotion regulation task to test whether individuals with depression are unable to sustain activation in neural circuits underlying positive affect and reward. While up-regulating positive affect, depressed individuals failed to sustain nucleus accumbens activity over time compared with controls. This decreased capacity was related to individual differences in self-reported positive affect. Connectivity analyses further implicated the fronto-striatal network in anhedonia. These findings support the hypothesis that anhedonia in depressed patients reflects the inability to sustain engagement of structures involved in positive affect and reward.
Resumo:
Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36–84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.
Resumo:
Germin is a hydrogen peroxide generating oxalate oxidase with extreme thermal stability; it is involved in the defense against biotic and abiotic stress in plants. The structure, determined at 1.6 A resolution, comprises beta-jellyroll monomers locked into a homohexamer (a trimer of dimers), with extensive surface burial accounting for its remarkable stability. The germin dimer is structurally equivalent to the monomer of the 7S seed storage proteins (vicilins), indicating evolution from a common ancestral protein. A single manganese ion is bound per germin monomer by ligands similar to those of manganese superoxide dismutase (MnSOD). Germin is also shown to have SOD activity and we propose that the defense against extracellular superoxide radicals is an important additional role for germin and related proteins.
Resumo:
The oxalate oxidase enzyme expressed in barley roots is a thermostable, protease-resistant enzyme that generates H2O2. It has great medical importance because of its use to assay plasma and urinary oxalate, and it has also been used to generate transgenic, pathogen-resistant crops. This protein has now been purified and three types of crystals grown. X-ray analysis shows that the symmetry present in these crystals is consistent with a hexameric arrangement of subunits, probably a trimer of dimers. This structure may be similar to that found in the related seed storage proteins.
Resumo:
It is known that germin, which is a marker of the onset of growth in germinating wheat, is an oxalate oxidase, and also that germins possess sequence similarity with legumin and vicilin seed storage proteins. These two pieces of information have been combined in order to generate a 3D model of germin based on the structure of vicilin and to examine the model with regard to a potential oxalate oxidase active site. A cluster of three histidine residues has been located within the conserved beta-barrel structure. While there is a relatively low level of overall sequence similarity between the model and the vicilin structures, the conservation of amino acids important in maintaining the scaffold of the beta-barrel lends confidence to the juxtaposition of the histidine residues. The cluster is similar structurally to those found in copper amine oxidase and other proteins, leading to the suggestion that it defines a metal-binding location within the oxalate oxidase active site. It is also proposed that the structural elements involved in intermolecular interactions in vicilins may play a role in oligomer formation in germin/oxalate oxidase.
Resumo:
Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.