957 resultados para reaction mechanism(Chemistry)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldimines react with reducing agents, such as Grignards, phenylsilane or zinc in the presence of titanium(IV) isopropoxide to form amines and reductively coupled imines (diamines). Using deuterium labeled reagents, the mechanism of reduction to form amines is described. Reducing agents, such as the Grignard and zinc result in the formation of low valent titanium (LVT), which in turn reduces the imine. On the other hand, phenylsilane reacts by a distinctly different mechanism and where a hydrogen atom from silicon is directly transferred to the titanium coordinated imine. (c) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal-free acylation of isoquinoline, quinoline, and quinoxaline derivatives has been developed employing a cross dehydrogenative coupling (CDC) reaction with aldehydes using substoichiometric amount of TBAB (tetrabutylammonium bromide, 30 mol %) and K2S2O8 as an oxidant. This intermolecular acylation of electron-deficient heteroarenes provides an easy access and a novel acylation method of heterocyclic compounds. The application of this CDC strategy for acylation strategy has been illustrated in synthesizing isoquinoline-derived natural products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of radialene complex 6M proceeds through a three-membered metallacyclopropene complex 7M, contrary to the prevailing notion of simple dimerization of metallacyclocumulene 1M. The 1M-7M equilibrium, which is predominantly governed by the size-dependent ligand binding of the metal atoms, plays a decisive role in the chemistry of Cp2M-ligand complexes. This size dependency is further fine-tuned by the substituents on the substrates and helps in exploiting these classes of metallacycles to generate new chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The average time tau(r) for one end of a long, self-avoiding polymer to interact for the first time with a flat penetrable surface to which it is attached at the other end is shown here to scale essentially as the square of the chain's contour length N. This result is obtained within the framework of the Wilemski-Fixman approximation to diffusion-limited reactions, in which the reaction time is expressed as a time correlation function of a ``sink'' term. In the present work, this sink-sink correlation function is calculated using perturbation expansions in the excluded volume and the polymer-surface interactions, with renormalization group methods being used to resum the expansion into a power law form. The quadratic dependence of tau(r) on N mirrors the behavior of the average time tau(c) of a free random walk to cyclize, but contrasts with the cyclization time of a free self-avoiding walk (SAW), for which tau(r) similar to N-2.2. A simulation study by Cheng and Makarov J. Phys. Chem. B 114, 3321 (2010)] of the chain-end reaction time of an SAW on a flat impenetrable surface leads to the same N-2.2 behavior, which is surprising given the reduced conformational space a tethered polymer has to explore in order to react. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficient deprotection of several acetals, dithioacetals, and tetrahydropyranyl (THP) ethers under ambient conditions, using chloral hydrate in hexane, is described. Excellent yields were realized for a wide range of both aliphatic and aromatic substrates. The method is characterized by mild conditions (room temperatures or below), simple workup, and the ready availability of chloral hydrate. High chemoselectivity was also observed in the deprotection, acetonides, esters, and amides being unaffected under the reaction conditions. Products were generally purified chromatographically and identified spectrally. These results constitute a novel addition to current methodology involving a widely employed deprotection tactic in organic synthesis. It seems likely that the mechanism of the reaction involves adsorption of the substrate on the surface of the sparingly soluble chloral hydrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface chemistry and the intrinsic porous architectures of porous substrates play a major role in the design of drug delivery systems. An interesting example is the drug elution characteristic from hydrothermally synthesised titania nanotubes with tunable surface chemistry. The variation in release rates of Ibuprofen (IBU) is largely influenced by the nature of the functional groups on titania nanotubes and pH of suspending medium. To elucidate the extent of interaction between the encapsulated IBU and the functional groups on titania nanotubes, the release profiles have been modelled with an empirical Hill equation. The analysis aided in establishing a probable mechanism for the release of IBU from the titania nanotubes. The study of controlled drug release from TiO2 has wider implication in the context of biomedical engineering. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iridium nanostructures with different morphologies are synthesized by a simple, environmentally friendly approach in aqueous media under mild conditions. The morphology dependent electrocatalytic activity of Ir nanochains and nanoparticles towards oxygen reduction reaction (ORR) has been demonstrated in both acidic and alkaline media. Comparative electrochemical studies reveal that nanochains exhibit significantly enhanced ORR activities in both acidic and alkaline media as compared with nanoparticles, as a result of the continuous structure of interconnected particles. The mechanism of oxygen reduction on Ir nanostructures predominantly follows a four-electron pathway in alkaline and acidic solutions. Excellent stability and good selectivity towards methanol tolerance are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 +/- 0.36)) exp(-39.70 +/- 1.83)/RT) s(-1) Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytotoxic activity of a new series of 2-(4'-chlorobenzyl)-5,6-disubstituted imidazo2,1-b]1,3,4]wthiadiazoles against different human and murine cancer cell lines is reported. Among the tested compounds, two derivatives namely 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo2,1-1)]1,3,4]th iadiazole-5-carbaldehyde 4i and 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-ypimidazo2,1-1)]1,3,4]thi adiazol-5-yl thiocyanate 5i emerged as the most potent against all the cell lines. To investigate the mechanism of action, we selected compounds 4i for cell cycle study, analysis of mitochondrial membrane potential and Annexin V-FITC flow cytometric analysis and DNA fragmentation assay. Results showed that 4i induced cytotoxicity by inducing apoptosis without arresting the cell cycle. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2-Phenylthiazolin-5-one (5, a thioazlactone) condenses with various aldehydes in the presence of the mild base Mn(II) acetate as catalyst in CH2Cl2 solution. This leads to the corresponding Erlenmeyer reaction products (6) in excellent yields in the case of aromatic aldehydes and moderate yields in others. The mildness of the reaction conditions is apparently enabled by the aromaticity of the (putative) intermediate thiazolone anion. The structure and stereochemistry (Z) of the product derived from i-BuCHO was confirmed by single crystal X-ray diffraction. This study overcomes key limitations of the classical Erlenmeyer synthesis and also introduces the relatively nontoxic Mn(II) acetate as a reagent in heterocyclic chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The products of the Henry nitroaldol reaction from nitromethane and several aldehydes were reduced to the corresponding nitroalkanes with (n-Bu)(3)SnH in water under microwave irradiation (80 degrees C/10 min), or dehydrated to the corresponding nitroalkenes with K2CO3 in water (generally 0-5 degrees C/20 min). Both ``one-pot'' reactions occur in excellent yields across a range of aliphatic and aromatic (including heteroaromatic) substrates. It seems likely that the deoxygenation of the nitroaldols occurs via coordination of an oxygen atom of the nitro group with a tin atom, which facilitates hydride delivery in the transition state. The elimination of water from the nitroaldols in mild base is likely driven by the stability of the conjugated nitroalkene products. The elimination required workup with 2N HCl, which likely displaces a nitroalkane-nitroalkene equilibrium towards the latter. These extensions of the Henry reaction lead to products not easily obtained otherwise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag+ ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O-2 cells, these cells are assembled and characterized. Li-O-2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O-2 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study provides an extensive and detailed numerical analysis of NO chemical kinetics in low calorific value H-2/CO syngas flames utilizing predictions by five chemical kinetic mechanisms available out of which four deal with H-2/CO while the fifth mechanism (GRI 3.0) additionally accounts for hydrocarbon chemistry. Comparison of predicted axial NO profiles in premixed flat flames with measurements at 1 bar, 3.05 bar and 9.15 bar shows considerably large quantitative differences among the various mechanisms. However, at each pressure, the quantitative reaction path diagrams show similar NO formation pathways for most of the mechanisms. Interestingly, in counterflow diffusion flames, the quantitative reaction path diagrams and sensitivity analyses using the various mechanisms reveal major differences in the NO formation pathways and reaction rates of important reactions. The NNH and N2O intermediate pathways are found to be the major contributors for NO formation in all the reaction mechanisms except GRI 3.0 in syngas diffusion flames. The GRI 3.0 mechanism is observed to predict prompt NO pathway as the major contributing pathway to NO formation. This is attributed to prediction of a large concentration of CH radical by the GRI 3.0 as opposed to a relatively negligible value predicted by all other mechanisms. Also, the back-conversion of NNH into N2O at lower pressures (2-4 bar) was uniquely observed for one of the five mechanisms. The net reaction rates and peak flame temperatures are used to correlate and explain the differences observed in the peak NO] at different pressures. This study identifies key reactions needing assessment and also highlights the need for experimental data in syngas diffusion flames in order to assess and optimize H-2/CO and nitrogen chemistry. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.