956 resultados para random amplification of polymorfic DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the charge separation rate and yield exhibiting an exponential dependence ∝ exp(−βR) on the d-a distance (R). Resonance coupling results in mechanism ii with the charge separation lifetime τ ∝ Nη and yield Y ≃ (1 + δ̄ Nη)−1 exhibiting a weak (algebraic) N and distance dependence. The power parameter η is determined by charge hopping random walk. Energetic control of the charge migration mechanism is exerted by the energetics of the ion pair state d∓B1±B2 … BNa relative to the electronically excited donor doorway state d*B1B2 … BNa. The realization of charge separation via superexchange or hopping is determined by the base sequence within the bridge. Our energetic–dynamic relations, in conjunction with the energetic data for d*/d− and for B/B+, determine the realization of the two distinct mechanisms in different hole donor systems, establishing the conditions for “chemistry at a distance” after charge transport in DNA. The energetic control of the charge migration mechanisms attained by the sequence specificity of the bridge is universal for large molecular-scale systems, for proteins, and for DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a plant protoplast transformation method that provides transformants with a simple pattern of integration of a foreign gene. The approach is to deliver into plant protoplasts by direct gene transfer the Agrobacterium virulence genes virD1 and virD2 with or without virE2, together with a target plasmid containing a gene of interest flanked by Agrobacterium T-DNA border repeat sequences of 25 bp. We present evidence of T-DNA formation in maize protoplasts and its integration into the maize genome. The frequency of VirD1-VirD2-mediated integration events was about 20–35% of the total number of transformants. The addition of virE2 doubled the transformation efficiency. The method described here is of sufficient efficiency and simplicity to be useful for the production of transgenic plants with single-copy well-defined transgenic inserts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the mechanical separation of the two complementary strands of a single molecule of bacteriophage λ DNA. The 3′ and 5′ extremities on one end of the molecule are pulled progressively apart, and this leads to the opening of the double helix. The typical forces along the opening are in the range of 10–15 pN. The separation force signal is shown to be related to the local GC vs. AT content along the molecule. Variations of this content on a typical scale of 100–500 bases are presently detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative DNA damage is generated by reactive oxygen species. The mutagenic base, 8-oxoguanine, formed by this process, is removed from oxidatively damaged DNA by base excision repair. Genes coding for DNA repair enzymes that recognize 8-oxoguanine have been reported in bacteria and yeast. We have identified and characterized mouse and human cDNAs encoding homologs of the 8-oxoguanine DNA glycosylase (ogg1) gene of Saccharomyces cerevisiae. Escherichia coli doubly mutant for mutM and mutY have a mutator phenotype and are deficient in 8-oxoguanine repair. The recombinant mouse gene (mOgg1) suppresses the mutator phenotype of mutY/mutM E. coli. Extracts prepared from mutY/mutM E. coli expressing mOgg1 contain an activity that excises 8-oxoguanine from DNA and a β-lyase activity that nicks DNA 3′ to the lesion. The mouse ogg1 gene product acts efficiently on DNA duplexes in which 7,8-dihydroxy-8-oxo-2′-deoxyguanosine (8-oxodG) is paired with dC, acts weakly on duplexes in which 8-oxodG is paired with dT or dG, and is inactive against duplexes in which 8-oxodG is paired with dA. Mouse and human ogg1 genes contain a helix–hairpin–helix structural motif with conserved residues characteristic of a recently defined family of DNA glycosylases. Ogg1 mRNA is expressed in several mouse tissues; highest levels were detected in testes. Isolation of the mouse ogg1 gene makes it possible to modulate its expression in mice and to explore the involvement of oxidative DNA damage and associated repair processes in aging and cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive and precise in vitro technique for detecting DNA strand discontinuities produced in vivo has been developed. The procedure, a form of runoff DNA synthesis on molecules released from lysed bacterial cells, mapped precisely the position of cleavage of the plasmid pMV158 leading strand origin in Streptococcus pneumoniae and the site of strand scission, nic, at the transfer origins of F and the F-like plasmid R1 in Escherichia coli. When high frequency of recombination strains of E. coli were examined, DNA strand discontinuities at the nic positions of the chromosomally integrated fertility factors were also observed. Detection of DNA strand scission at the nic position of F DNA in the high frequency of recombination strains, as well as in the episomal factors, was dependent on sexual expression from the transmissable element, but was independent of mating. These results imply that not only the transfer origins of extrachromosomal F and F-like fertility factors, but also the origins of stably integrated copies of these plasmids, are subject to an equilibrium of cleavage and ligation in vivo in the absence of DNA transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although integration of viral DNA into host chromosomes occurs regularly in bacteria and animals, there are few reported cases in plants, and these involve insertion at only one or a few sites. Here, we report that pararetrovirus-like sequences have integrated repeatedly into tobacco chromosomes, attaining a copy number of ≈103. Insertion apparently occurred by illegitimate recombination. From the sequences of 22 independent insertions recovered from a healthy plant, an 8-kilobase genome encoding a previously uncharacterized pararetrovirus that does not contain an integrase function could be assembled. Preferred boundaries of the viral inserts may correspond to recombinogenic gaps in open circular viral DNA. An unusual feature of the integrated viral sequences is a variable tandem repeat cluster, which might reflect defective genomes that preferentially recombine into plant DNA. The recurrent invasion of pararetroviral DNA into tobacco chromosomes demonstrates that viral sequences can contribute significantly to plant genome evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive, labor-saving, and easily automatable nonradioactive procedure named APEX-FCS (amplified probe extension detected by fluorescence correlation spectroscopy) has been established to detect specific in vitro amplification of pathogen genomic sequences. As an example, Mycobacterium tuberculosis genomic DNA was subjected to PCR amplification with the Stoffel fragment of Thermus aquaticus DNA polymerase in the presence of nanomolar concentrations of a rhodamine-labeled probe (third primer), binding to the target in between the micromolar amplification primers. The probe becomes extended only when specific amplification occurs. Its low concentration avoids false-positives due to unspecific hybridization under PCR conditions. With increasing portion of extended probe molecules, the probe’s average translational diffusion properties gradually change over the course of the reaction, reflecting amplification kinetics. Following PCR, this change from a stage of high to a stage of low mobility can directly be monitored during a 30-s measurement using a fluorescence correlation spectroscopy device. Quantitation down to 10 target molecules in a background of 2.5 μg unspecific DNA without post-PCR probe manipulations could be achieved with different primer/probe combinations. The assay holds the promise to concurrently perform amplification, probe hybridization, and specific detection without opening the reaction chamber, if sealable foils are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed quantitative kinetic model for the polymerase chain reaction (PCR) is developed, which allows us to predict the probability of replication of a DNA molecule in terms of the physical parameters involved in the system. The important issue of the determination of the number of PCR cycles during which this probability can be considered to be a constant is solved within the framework of the model. New phenomena of multimodality and scaling behavior in the distribution of the number of molecules after a given number of PCR cycles are presented. The relevance of the model for quantitative PCR is discussed, and a novel quantitative PCR technique is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel restriction enzymes can be created by fusing the nuclease domain of FokI endonuclease with defined DNA binding domains. Recently, we have characterized a domain (Zα) from the N-terminal region of human double-stranded RNA adenosine deaminase (hADAR1), which binds the Z-conformation with high specificity. Here we report creation of a conformation-specific endonuclease, Zα nuclease, which is a chimera of Zα and FokI nuclease. Purified Zα nuclease cleaves negatively supercoiled plasmids only when they contain a Z-DNA forming insert, such as (dC-dG)13. The precise location of the cleavage sites was determined by primer extension. Cutting has been mapped to the edge of the B-Z junction, suggesting that Zα nuclease binds within the Z-DNA insert, but cleaves in the nearby B-DNA, by using a mechanism similar to type IIs restriction enzymes. These data show that Zα binds Z-DNA in an environment similar to that in a cell. Zα nuclease, a structure-specific restriction enzyme, may be a useful tool for further study of the biological role of Z-DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here a DNA polymerase family highly conserved in Euryarchaeota, a subdomain of Archaea. The DNA polymerase is composed of two proteins, DP1 and DP2. Sequence analysis showed that considerable similarity exists between DP1 and the second subunit of eukaryotic DNA polymerase δ, a protein essential for the propagation of Eukarya, and that DP2 has conserved motifs found in proteins with nucleotide-polymerizing activity. These results, together with our previous biochemical analyses of one of the members, DNA polymerase II (DP1 + DP2) from Pyrococcus furiosus, implicate the DNA polymerases of this family in the DNA replication process of Euryarchaeota. The discovery of this DNA-polymerase family, aside from providing an opportunity to enhance our knowledge of the evolution of DNA polymerases, is a significant step toward the complete understanding of DNA replication across the three domains of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal mammalian cells arrest primarily in G1 in response to N-(phosphonacetyl)-l-aspartate (PALA), which starves them for pyrimidine nucleotides, and do not generate or tolerate amplification of the CAD gene, which confers resistance to PALA. Loss of p53, accompanied by loss of G1 arrest, permits CAD gene amplification and the consequent formation of PALA-resistant colonies. We have found rat and human cell lines that retain wild-type p53 but have lost the ability to arrest in G1 in response to PALA. However, these cells still fail to give PALA-resistant colonies and are protected from DNA damage through the operation of a second checkpoint that arrests them reversibly within S-phase. This S-phase arrest, unmasked in the absence of the G1 checkpoint, is dependent on p53 and independent of p21/waf1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) coordinately regulate cytokine gene expression in activated T-cells by binding to closely juxtaposed sites in cytokine promoters. The structural basis for cooperative binding of NFAT and AP-1 to these sites, and indeed for the cooperative binding of transcription factors to composite regulatory elements in general, is not well understood. Mutagenesis studies have identified a segment of AP-1, which lies at the junction of its DNA-binding and dimerization domains (basic region and leucine zipper, respectively), as being essential for protein–protein interactions with NFAT in the ternary NFAT/AP-1/DNA complex. In a model of the ternary complex, the segment of NFAT nearest AP-1 is the Rel insert region (RIR), a feature that is notable for its hypervariability in size and in sequence amongst members of the Rel transcription factor family. Here we have used mutational analysis to study the role of the NFAT RIR in binding to DNA and AP-1. Parallel yeast one-hybrid screening assays in combination with alanine-scanning mutagenesis led to the identification of four amino acid residues in the RIR of NFAT2 (also known as NFATC1 or NFATc) that are essential for cooperativity with AP-1 (Ile-544, Glu-545, Thr-551, and Ile-553), and three residues that are involved in interactions with DNA (Lys-538, Arg-540, and Asn-541). These results were confirmed and extended through in vitro binding assays. We thus conclude that the NFAT RIR plays an essential dual role in DNA recognition and cooperative binding to AP-1 family transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA exhibits a surprising multiplicity of structures when it is packed into dense aggregates. It undergoes various polymorphous transitions (e.g., from the B to A form) and mesomorphous transformations (from hexagonal to orthorhombic or monoclinic packing, changes in the mutual alignment of nearest neighbors, etc). In this report we show that such phenomena may have their origin in the specific helical symmetry of the charge distribution on DNA surface. Electrostatic interaction between neighboring DNA molecules exhibits strong dependence on the patterns of molecular surface groups and adsorbed counter-ions. As a result, it is affected by such structural parameters as the helical pitch, groove width, the number of base pairs per helical turn, etc. We derive expressions which relate the energy of electrostatic interaction with these parameters and with the packing variables characterizing the axial and azimuthal alignment between neighboring macromolecules. We show, in particular, that the structural changes upon the B-to-A transition reduce the electrostatic energy by ≈kcal/mol per base pair, at a random adsorption of counter ions. Ion binding into the narrow groove weakens or inverts this effect, stabilizing B-DNA, as it is presumably the case in Li+-DNA assemblies. The packing symmetry and molecular alignment in DNA aggregates are shown to be affected by the patterns of ion binding.