941 resultados para rain forest soil


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Large pools of dead wood in mangrove forests following disturbances such as hurricanes may influence nutrient fluxes. We hypothesized that decomposition of wood of mangroves from Florida, USA (Avicennia germinans, Laguncularia racemosa and Rhizophora mangle), and the consequent nutrient dynamics, would depend on species, location in the forest relative to freshwater and marine influences and whether the wood was standing, lying on the sediment surface or buried. 2. Wood disks (8–10 cm diameter, 1 cm thick) from each species were set to decompose at sites along the Shark River, either buried in the sediment, on the soil surface or in the air (above both the soil surface and high tide elevation). 3. A simple exponential model described the decay of wood in the air, and neither species nor site had any effect on the decay coefficient during the first 13 months of decomposition. 4. Over 28 months of decomposition, buried and surface disks decomposed following a two-component model, with labile and refractory components. Avicennia germinans had the largest labile component (18 ± 2% of dry weight), while Laguncularia racemosa had the lowest (10 ± 2%). Labile components decayed at rates of 0.37–23.71% month−1, while refractory components decayed at rates of 0.001–0.033% month−1. Disks decomposing on the soil surface had higher decay rates than buried disks, but both were higher than disks in the air. All species had similar decay rates of the labile and refractory components, but A. germinans exhibited faster overall decay because of a higher proportion of labile components. 5. Nitrogen content generally increased in buried and surface disks, but there was little change in N content of disks in the air over the 2-year study. Between 17% and 68% of total phosphorus in wood leached out during the first 2 months of decomposition, with buried disks having the greater losses, P remaining constant or increasing slightly thereafter. 6. Newly deposited wood from living trees was a short-term source of N for the ecosystem but, by the end of 2 years, had become a net sink. Wood, however, remained a source of P for the ecosystem. 7. As in other forested ecosystems, coarse woody debris can have a significant impact on carbon and nutrient dynamics in mangrove forests. The prevalence of disturbances, such as hurricanes, that can deposit large amounts of wood on the forest floor accentuates the importance of downed wood in these forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally, consumers affect ecosystem processes including nutrient dynamics. Herbivores have been known to slow nutrient flow in boreal forest ecosystems. I examined the effects of introduced moose on disturbed forests of Newfoundland, Canada by conducting a field experiment during August - November 2014 in 20 paired moose exclosure-control plots. I tested whether moose browsing directly and indirectly affected forests by measuring plant species composition, litter quality and quantity, soil quality, and decomposition rates in areas moose exclosure-control plots. I analyzed moose effects using linear mixed effects models and found evidence indicating that moose reduce plant height and litter biomass affecting the availability of carbon, nitrogen, and phosphorus. However, plant diversity, soil quality, and litter decomposition did not differ between moose exclosures and controls. Moose in Newfoundland directly influence plant regeneration and litter biomass while indirect effects on soil ecosystems may be limited by time, disturbance, and climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forests change with changes in their environment based on the physiological responses of individual trees. These short-term reactions have cumulative impacts on long-term demographic performance. For a tree in a forest community, success depends on biomass growth to capture above- and belowground resources and reproductive output to establish future generations. Here we examine aspects of how forests respond to changes in moisture and light availability and how these responses are related to tree demography and physiology.

First we address the long-term pattern of tree decline before death and its connection with drought. Increasing drought stress and chronic morbidity could have pervasive impacts on forest composition in many regions. We use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 years. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with species drought tolerance.

Next, we investigate differences among tree species in reproductive output relative to biomass growth with changes in light availability. Previous studies reach conflicting conclusions about the constraints on reproductive allocation relative to growth and how they vary through time, across species, and between environments. We test the hypothesis that canopy exposure to light, a critical resource, limits reproductive allocation by comparing long-term relationships between reproduction and growth for trees from 21 species in forests throughout the southeastern U.S. We found that species had divergent responses to light availability, with shade-intolerant species experiencing an alleviation of trade-offs between growth and reproduction at high light. Shade-tolerant species showed no changes in reproductive output across light environments.

Given that the above patterns depend on the maintenance of transpiration, we next developed an approach for predicting whole-tree water use from sap flux observations. Accurately scaling these observations to tree- or stand-levels requires accounting for variation in sap flux between wood types and with depth into the tree. We compared different models with sap flux data to test the hypotheses that radial sap flux profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in new settings. We outline a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.

Finally, we estimated tree water balances during drought with a statistical time-series analysis. Moisture limitation in forest stands comes predominantly from water use by the trees themselves, a drought-stand feedback. We show that drought impacts on tree fitness and forest composition can be predicted by tracking the moisture reservoir available to each tree in a mass balance. We apply this model to multiple seasonal droughts in a temperate forest with measurements of tree water use to demonstrate how species and size differences modulate moisture availability across landscapes. As trees deplete their soil moisture reservoir during droughts, a transpiration deficit develops, leading to reduced biomass growth and reproductive output.

This dissertation draws connections between the physiological condition of individual trees and their behavior in crowded, diverse, and continually-changing forest stands. The analyses take advantage of growing data sets on both the physiology and demography of trees as well as novel statistical techniques that allow us to link these observations to realistic quantitative models. The results can be used to scale up tree measurements to entire stands and address questions about the future composition of forests and the land’s balance of water and carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation examined the response to termination of CO2 enrichment of a forest ecosystem exposed to long-term elevated atmospheric CO2 condition, and aimed at investigating responses and their underlying mechanisms of two important factors of carbon cycle in the ecosystem, stomatal conductance and soil respiration. Because the contribution of understory vegetation to the entire ecosystem grew with time, we first investigated the effect of elevated CO2 on understory vegetation. Potential growth enhancing effect of elevated CO2 were not observed, and light seemed to be a limiting factor. Secondly, we examined the importance of aerodynamic conductance to determine canopy conductance, and found that its effect can be negligible. Responses of stomatal conductance and soil respiration were assessed using Bayesian state space model. In two years after the termination of CO2 enrichment, stomatal conductance in formerly elevated CO2 returned to ambient level, while soil respiration became smaller than ambient level and did not recovered to ambient in two years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1 m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (~6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0-100 cm depth interval is 33.8 kg C/m**2, of which 11.8 kg C/m**2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil polluted and not oil polluted soils (crude oil hydrocarbons contents: 20-92500 mg/kg dry soil mass) under natural grass and forest vegetation and in a bog in the Russian tundra were compared in their principal soil ecological parameters, the oil content and the microbial indicators. CFE biomass-C, dehydrogenase and arylsulfatase activity were enhanced with the occurrence of crude oil. Using these parameters for purposes of controlling remediation and recultivation success it is not possible to distinguish bctween promotion of microbial activity by oil carbon or soil organic carbon (SOC). For this reason we think that these parameters are not appropriate to indicate a soil damage by an oil impact. In contrast the metabolie quotient (qC02), calculated as the ratio between soil basal respiration and the SIR biomass-C was adequate to indicate a high crude oil contamination in soil. Also, the ß-glucosidase activity (parameter ß-GL/SOC) was correlated negatively with oil in soil. The indication of a soil damage by using the stress parameter qCO, or the specific enzyme activities (activity/SOC) minimizes the promotion effect of the recent SOC content on microbial parameters. Both biomass methods (SIR, CFE) have technical problems in application for crude oil-contaminated and subarctic soils. CFE does not reflect the low C_mic level of the cold tundra soils. We recommend to test every method for its suitability before any data collection in series as well as application for cold soils and the application of ecophysiological ratios as R_mic/C_mic, C_mic/SOC or enzymatic activity/SOC instead of absolute data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Salgesch forest in the Canton of Valais in Switzerland, the understory has been removed to test whether effects on pine tree vitality. The data set published here compromises 120 time series of 60 soil temperature and 60 volumetric water content (VWC) sensors (EC-TM and 5-TM) (Decagon Devices, WA, USA) at three soil depth levels (5, 30, 60 cm) employed in the direct vicinity of six control trees and six trees with the undergrowth removed. At the levels 5 and 60 cm, three replications were made whereas 4 replications were made at level 30 cm. Six loggers recorded hourly data since 2010 with 18% gaps or 11% when not considering winter months December, January and February. The figure attached to this repository shows the average VWC and temperature of all measurements within the same depth and treatment specific setting aggregated in a defined time interval and period. In addition to that, the standard deviations are plotted as transparent polygons. In case of insufficient values for calculating standard deviations, the setting specific mean standard deviation of the considered time period are inserted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land-use change can have a major influence on soil organic carbon (SOC) and above-ground C pools. We assessed a change from native vegetation to introduced Pinus species plantations on C pools using eight paired sites. At each site we determined the impacts on 0–50 cm below-ground (SOC, charcoal C, organic matter C, particulate organic C, humic organic C, resistant organic C) and above-ground (litter, coarse woody debris, standing trees and woody understorey plants) C pools. In an analysis across the different study sites there was no significant difference (P > 0.05) in SOC or above-ground tree C stocks between paired native vegetation and pine plantations, although significant differences did exist at specific sites. SOC (calculated based on an equivalent soil mass basis) was higher in the pine plantations at two sites, higher in the native vegetation at two sites and did not differ for the other four sites. The site to site variation in SOC across the landscape was far greater than the variation observed with a change from native vegetation to introduced Pinus plantation. Differences between sites were not explained by soil type, although tree basal area was positively correlated with 0–50 cm SOC. In fact, in the native vegetation there was a significant linear relationship between above-ground biomass and SOC that explained 88.8% of the variation in the data. Fine litter C (0–25 mm diameter) tended to be higher in the pine forest than in the adjacent native vegetation and was significantly higher in the pine forest at five of the eight paired sites. Total litter C (0–100 mm diameter) increased significantly with plantation age (R2 = 0.64). Carbon stored in understorey woody plants (2.5–10 cm DBH) was higher in the native vegetation than in the adjacent pine forest. Total site C varied greatly across the study area from 58.8 Mg ha−1 at a native heathland site to 497.8 Mg ha−1 at a native eucalypt forest site. Our findings suggest that the effects of change from native vegetation to introduced Pinus sp. forest are highly site-specific and may be positive, negative, or have no influence on various C pools, depending on local site characteristics (e.g. plantation age and type of native vegetation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ecologia, Programa de Pós-Graduação em Ecologia, 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using N-15 pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67 degrees N) to steppe (54 degrees N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.