954 resultados para quantum corrections to solitons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. We investigate the zero-bias and zero-temperature conductance through pi-conjugated annulene molecules weakly coupled to two leads for different source-drain configurations, finding an important reduction for certain transmission channels and for particular geometries as a consequence of destructive quantum interference between states with definite momenta. When translational symmetry is broken by an external perturbation we find an abrupt increase of the conductance through those channels. Previous studies concentrated on the effect at the Fermi energy, where this effect is very small. By analyzing the effect of symmetry breaking on the main transmission channels we find a much larger response thus leading to the possibility of a larger switching of the conductance through single molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin-orbit coupling, producing a large nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSHphase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study power dissipation for systems of multiple quantum wires meeting at a junction, in terms of a current splitting matrix (M) describing the junction. We present a unified framework for studying dissipation for wires with either interacting electrons (i.e., Tomonaga-Luttinger liquid wires with Fermi-liquid leads) or noninteracting electrons. We show that for a given matrix M, the eigenvalues of (MM)-M-T characterize the dissipation, and the eigenvectors identify the combinations of bias voltages which need to be applied to the different wires in order to maximize the dissipation associated with the junction. We use our analysis to propose and study some microscopic models of a dissipative junction which employ the edge states of a quantum Hall liquid. These models realize some specific forms of the M matrix whose entries depends on the tunneling amplitudes between the different edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the thermoelectric power under strong magnetic field (TPSM) in quantum dots (QDs) of nonlinear optical, III-V, II-VI, GaP, Ge, Te, Graphite, PtSb2, zerogap, Lead Germanium Telluride, GaSb, stressed materials, Bismuth, IV-VI, II-V, Zinc and Cadmium diphosphides, Bi2Te3 and Antimony respectively. The TPSM in III-V, II-VI, IV-VI, HgTe/CdTe quantum well superlattices with graded interfaces and effective mass superlattices of the same materials together with the quantum dots of aforementioned superlattices have also been investigated in this context on the basis of respective carrier dispersion laws. It has been found that the TPSM for the said quantum dots oscillates with increasing thickness and decreases with increasing electron concentration in various manners and oscillates with film thickness, inverse quantizing magnetic field and impurity concentration for all types of superlattices with two entirely different signatures of quantization as appropriate in respective cases of the aforementioned quantized structures. The well known expression of the TPSM for wide-gap materials has been obtained as special case for our generalized analysis under certain limiting condition, and this compatibility is an indirect test of our generalized formalism. Besides, we have suggested the experimental method of determining the carrier contribution to elastic constants for nanostructured materials having arbitrary dispersion laws.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a three player quantum `Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the `Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(CH3)4NGeCl3 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a Double Gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body, thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi-classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one-dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations, then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the photoemission from quantum wells (QWs) in ultrathin films (UFs) and quantum well wires (QWWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined Ill-V compounds form the special cases of our generalized analysis. The photoemission has also been studied for quantum confined II-VI, n-GaP, n-Ge, PtSb2, stressed materials and Bismuth on the basis of respective dispersion relations. It has been found taking quantum confined CdGeAS(2), InAs, InSb, CdS, GaP, Ge, PtSb2, stressed n-InSb and B1 that the photoemission exhibits quantized variations with the incident photon energy, changing electron concentration and film thickness, respectively, for all types of quantum confinement. The photoemission from CNs exhibits oscillatory dependence with increasing normalized electron degeneracy and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of photoemission from non-degenerate semiconductors and parabolic energy bands, leading to the compatibility test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The description of quarks and gluons, using the theory of quantum chromodynamics (QCD), has been known for a long time. Nevertheless, many fundamental questions in QCD remain unanswered. This is mainly due to problems in solving the theory at low energies, where the theory is strongly interacting. AdS/CFT is a duality between a specific string theory and a conformal field theory. Duality provides new tools to solve the conformal field theory in the strong coupling regime. There is also some evidence that using the duality, one can get at least qualitative understanding of how QCD behaves at strong coupling. In this thesis, we try to address some issues related to QCD and heavy ion collisions, applying the duality in various ways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been an outstanding problem that a semiconducting host in the bulk form can be doped to a large extent, while the same host in the nanocrystal form is found to resist any appreciable level of doping rather stubbornly, this problem being more acute in the wurtzite form compared to the zinc blende one. In contrast, our results based on the lattice parameter tuning in a ZnxCd1−xS alloy nanocrystal system achieves 7.5% Mn2+ doping in a wurtzite nanocrystal, such a concentration being substantially higher compared to earlier reports even for nanocrystal hosts with the “favorable” zinc-blende structure. These results prove a consequence of local strains due to a size mismatch between the dopant and the host that can be avoided by optimizing the composition of the alloyed host. Additionally, the present approach opens up a new route to dope such nanocrystals to a macroscopic extent as required for many applications. Photophysical studies show that the quantum efficiency per Mn2+ ion decreases exponentially with the average number of Mn2+ ions per nanocrystal; en route, a high quantum efficiency of 25% is achieved for a range of compositions.