995 resultados para quantum computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonic enhanced Schottky detectors operating on the basis of the internal photoemission process are becoming an attractive choice for detecting photons with sub bandgap energy. Yet, the quantum efficiency of these detectors appears to be low compare to the more conventional detectors which are based on interband transitions in a semiconductor. Hereby we provide a theoretical model to predict the quantum efficiency of guided mode internal photoemission photodetector with focus on the platform of silicon plasmonics. The model is supported by numerical simulations and comparison to experimental results. Finally, we discuss approaches for further enhancement of the quantum efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the operation of a gigahertz clocked quantum key distribution system, with two classical data communication channels using coarse wavelength division multiplexing over a record fibre distance of 80km. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate quantum key distribution (QKD) with bidirectional 10 Gb/s classical data channels in a single fiber using dense wavelength division multiplexing. Record secure key rates of 2.38 Mbps and fiber distances up to 70km are achieved. Data channels are simultaneously monitored for error-free operation. The robustness of QKD is further demonstrated with a secure key rate of 445 kbps over 25km, obtained in the presence of data lasers launching conventional 0 dBm power. We discuss the fundamental limit for the QKD performance in the multiplexing environment. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a monolithically integrated mode-locked narrow stripe QD MOPA operating at 1300nm generating a stable 20GHz pulse train with an average power of 46.4mW and a pulse duration of 8.3ps. © Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superradiant emission pulses from a quantum-dot tapered device are generated on demand at repetition rates of up to 5 MHz. The pulses have durations as short as 320 fs at a wavelength of 1270 nm. © 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A packaged 10GHz monolithic two-section quantum-dot mode-locked laser is presented, with record narrow 500Hz RF electrical linewidth for passive mode-locking. Single sideband noise spectra show 147fs integrated timing jitter over the 4MHz-80MHz frequency range. © 2009 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since ubiquitous technology was introduced in the early 1980s, it has rapidly developed, and been applied to various domains mainly for the improvement of human life. In this article, the authors propose that ubiquitous computing technology can be effectively used for the design and manufacturing of a product by proposing a new paradigm, called UbiDM (Design and Manufacture via Ubiquitous Computing Technology). The key aspect of UbiDM is the utilisation of the entire product lifecycle information obtained via ubiquitous computing technology for the design and manufacture of the product. The new paradigm can solve many of the problems that have not been properly handled by previous manufacturing paradigms. Specifically, it will address the concept of UbiDM by the following aspects: (1) why there is a need for UbiDM; (2) the essence of UbiDM; (3) enabling technologies; (4) application area; (5) worldwide RD status; and (6) the societal impacts of UbiDM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superradiance (SR), or cooperative spontaneous emission, has been predicted by R. Dicke before the invention of the laser. During the last few years one can see a renaissance of both experimental and theoretical studies of the superradiant phase transition in a variety of media, ranging from quantum dots and Bose condensates through to black holes. Until recently, despite of many years of research, SR has been considered as a phenomenon of pure scientific interest without obvious potential applications. However, recent investigations of the femtosecond SR emission generation from semiconductors have opened up some practical opportunities for the exploitation of this quantum optics phenomenon. Here we present a brief review of some features, advantages and potential applications of the SR generation from semiconductor laser structures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse generation from a mode-locked single-section 1.55μm quantum-dash FP laser is demonstrated under continuous-wave operation. A 270GHz, 580fs pulse train is achieved by applying frequency multiplication using fiber dispersion. ©2009 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamic model of passive mode-locking in quantum-dot laser diodes is presented. It is found that in contrast with quantum-well lasers, rapid gain recovery is key for mode-locking of quantum-dot lasers. © 2008 Optical Society of America.