939 resultados para quantization artifacts
Resumo:
Femoroacetabular impingements (FAI) are due to an anatomical disproportion between the proximal femur and the acetabulum which causes premature wear of the joint surfaces. An operation is often necessary in order to relieve symptoms such as limited movement and pain as well as to prevent or slow down the degenerative process. The result is dependent on the preoperative status of the joint with poor results for advanced arthritis of the hip joint. This explains the necessity for an accurate diagnosis in order to recognize early stages of damage to the joint. The diagnosis of FAI includes clinical examination, X-ray examination and magnetic resonance imaging (MRI). The standard X-radiological examination for FAI is carried out using two X-ray images, an anterior-posterior view of the pelvis and a lateral view of the proximal femur, such as the cross-table lateral or Lauenstein projections. It is necessary that positioning criteria are adhered to in order to avoid distortion artifacts. MRI permits an examination of the pelvis on three levels and should also include radial planned sequences for improved representation of peripheral structures, such as the labrum and peripheral cartilage. The use of contrast medium for a direct MR arthrogram has proved to be advantageous particularly for representation of labrum damage. The data with respect to cartilage imaging are still unclear. Further developments in technology, such as biochemical-sensitive MRI applications, will be able to improve the diagnosis of the pelvis in the near future.
Resumo:
INTRODUCTION: Cartilage defects are common pathologies and surgical cartilage repair shows promising results. In its postoperative evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score, using different variables to describe the constitution of the cartilage repair tissue and the surrounding structures, is widely used. High-field magnetic resonance imaging (MRI) and 3-dimensional (3D) isotropic sequences may combine ideal preconditions to enhance the diagnostic performance of cartilage imaging.Aim of this study was to introduce an improved 3D MOCART score using the possibilities of an isotropic 3D true fast imaging with steady-state precession (True-FISP) sequence in the postoperative evaluation of patients after matrix-associated autologous chondrocyte transplantation (MACT) as well as to compare the results to the conventional 2D MOCART score using standard MR sequences. MATERIAL AND METHODS: The study had approval by the local ethics commission. One hundred consecutive MR scans in 60 patients at standard follow-up intervals of 1, 3, 6, 12, 24, and 60 months after MACT of the knee joint were prospectively included. The mean follow-up interval of this cross-sectional evaluation was 21.4 +/- 20.6 months; the mean age of the patients was 35.8 +/- 9.4 years. MRI was performed at a 3.0 Tesla unit. All variables of the standard 2D MOCART score where part of the new 3D MOCART score. Furthermore, additional variables and options were included with the aims to use the capabilities of isotropic MRI, to include the results of recent studies, and to adapt to the needs of patients and physician in a clinical routine examination. A proton-density turbo spin-echo sequence, a T2-weighted dual fast spin-echo (dual-FSE) sequence, and a T1-weighted turbo inversion recovery magnitude (TIRM) sequence were used to assess the standard 2D MOCART score; an isotropic 3D-TrueFISP sequence was prepared to evaluate the new 3D MOCART score. All 9 variables of the 2D MOCART score were compared with the corresponding variables obtained by the 3D MOCART score using the Pearson correlation coefficient; additionally the subjective quality and possible artifacts of the MR sequences were analyzed. RESULTS: The correlation between the standard 2D MOCART score and the new 3D MOCART showed for the 8 variables "defect fill," "cartilage interface," "surface," "adhesions," "structure," "signal intensity," "subchondral lamina," and "effusion"-a highly significant (P < 0.001) correlation with a Pearson coefficient between 0.566 and 0.932. The variable "bone marrow edema" correlated significantly (P < 0.05; Pearson coefficient: 0.257). The subjective quality of the 3 standard MR sequences was comparable to the isotropic 3D-TrueFISP sequence. Artifacts were more frequently visible within the 3D-TrueFISP sequence. CONCLUSION: In the clinical routine follow-up after cartilage repair, the 3D MOCART score, assessed by only 1 high-resolution isotropic MR sequence, provides comparable information than the standard 2D MOCART score. Hence, the new 3D MOCART score has the potential to combine the information of the standard 2D MOCART score with the possible advantages of isotropic 3D MRI at high-field. A clear limitation of the 3D-TrueFISP sequence was the high number of artifacts. Future studies have to prove the clinical benefits of a 3D MOCART score.
Resumo:
Recent brain imaging work has expanded our understanding of the mechanisms of perceptual, cognitive, and motor functions in human subjects, but research into the cerebral control of emotional and motivational function is at a much earlier stage. Important concepts and theories of emotion are briefly introduced, as are research designs and multimodal approaches to answering the central questions in the field. We provide a detailed inspection of the methodological and technical challenges in assessing the cerebral correlates of emotional activation, perception, learning, memory, and emotional regulation behavior in healthy humans. fMRI is particularly challenging in structures such as the amygdala as it is affected by susceptibility-related signal loss, image distortion, physiological and motion artifacts and colocalized Resting State Networks (RSNs). We review how these problems can be mitigated by using optimized echo-planar imaging (EPI) parameters, alternative MR sequences, and correction schemes. High-quality data can be acquired rapidly in these problematic regions with gradient compensated multiecho EPI or high resolution EPI with parallel imaging and optimum gradient directions, combined with distortion correction. Although neuroimaging studies of emotion encounter many difficulties regarding the limitations of measurement precision, research design, and strategies of validating neuropsychological emotion constructs, considerable improvement in data quality and sensitivity to subtle effects can be achieved. The methods outlined offer the prospect for fMRI studies of emotion to provide more sensitive, reliable, and representative models of measurement that systematically relate the dynamics of emotional regulation behavior with topographically distinct patterns of activity in the brain. This will provide additional information as an aid to assessment, categorization, and treatment of patients with emotional and personality disorders.
Resumo:
Few real software systems are built completely from scratch nowadays. Instead, systems are built iteratively and incrementally, while integrating and interacting with components from many other systems. Adaptation, reconfiguration and evolution are normal, ongoing processes throughout the lifecycle of a software system. Nevertheless the platforms, tools and environments we use to develop software are still largely based on an outmoded model that presupposes that software systems are closed and will not significantly evolve after deployment. We claim that in order to enable effective and graceful evolution of modern software systems, we must make these systems more amenable to change by (i) providing explicit, first-class models of software artifacts, change, and history at the level of the platform, (ii) continuously analysing static and dynamic evolution to track emergent properties, and (iii) closing the gap between the domain model and the developers' view of the evolving system. We outline our vision of dynamic, evolving software systems and identify the research challenges to realizing this vision.
Resumo:
Software visualizations can provide a concise overview of a complex software system. Unfortunately, since software has no physical shape, there is no “natural“ mapping of software to a two-dimensional space. As a consequence most visualizations tend to use a layout in which position and distance have no meaning, and consequently layout typical diverges from one visualization to another. We propose a consistent layout for software maps in which the position of a software artifact reflects its \emph{vocabulary}, and distance corresponds to similarity of vocabulary. We use Latent Semantic Indexing (LSI) to map software artifacts to a vector space, and then use Multidimensional Scaling (MDS) to map this vector space down to two dimensions. The resulting consistent layout allows us to develop a variety of thematic software maps that express very different aspects of software while making it easy to compare them. The approach is especially suitable for comparing views of evolving software, since the vocabulary of software artifacts tends to be stable over time.
Resumo:
Mainstream IDEs generally rely on the static structure of a software project to support browsing and navigation. We propose HeatMaps, a simple but highly configurable technique to enrich the way an IDE displays the static structure of a software system with additional kinds of information. A heatmap highlights software artifacts according to various metric values, such as bright red or pale blue, to indicate their potential degree of interest. We present a prototype system that implements heatmaps, and we describe an initial study that assesses the degree to which different heatmaps effectively guide developers in navigating software.
Resumo:
The IDE used in most Smalltalk dialects such as Pharo, Squeak or Cincom Smalltalk did not evolve significantly over the last years, if not to say decades. For other languages, for instance Java, the available IDEs made tremendous progress as Eclipse or NetBeans illustrate. While the Smalltalk IDE served as an exemplar for many years, other IDEs caught up or even overtook the erstwhile leader in terms of feature-richness, usability, or code navigation facilities. In this paper we first analyze the difficulty of software navigation in the Smalltalk IDE and second illustrate with concrete examples the features we added to the Smalltalk IDE to fill the gap to modern IDEs and to provide novel, improved means to navigate source space. We show that thanks to the agility and dynamics of Smalltalk, we are able to extend and enhance with reasonable effort the Smalltalk IDE to better support software navigation, program comprehension, and software maintenance in general. One such support is the integration of dynamic information into the static source views we are familiar with. Other means include easing the access to static information (for instance by better arranging important packages) or helping developers re-locating artifacts of interest (for example with a categorization system such as smart groups).
Resumo:
Navigating large software systems is difficult as the various artifacts are distributed in a huge space, while the relationships between different artifacts often remain hidden and obscure. As a consequence, developers using a modern interactive development environment (IDE) are forced to open views on numerous source artifacts to reveal these hidden relationships, leading to a crowded workspace with many opened windows or tabs. Developers often lose the overview in such a cluttered workspace as IDEs provide little support to get rid of unused windows. AutumnLeaves automatically selects windows unlikely for future use to be closed or grayed out while important ones are displayed more prominently. This reduces the number of windows opened at a time and adds structure to the developer's workspace. We validate AutumnLeaves with a benchmark evaluation using recorded navigation data of various developers to determine the prediction quality of the employed algorithms.
Resumo:
Efficient image blurring techniques based on the pyramid algorithm can be implemented on modern graphics hardware; thus, image blurring with arbitrary blur width is possible in real time even for large images. However, pyramidal blurring methods do not achieve the image quality provided by convolution filters; in particular, the shape of the corresponding filter kernel varies locally, which potentially results in objectionable rendering artifacts. In this work, a new analysis filter is designed that significantly reduces this variation for a particular pyramidal blurring technique. Moreover, the pyramidal blur algorithm is generalized to allow for a continuous variation of the blur width. Furthermore, an efficient implementation for programmable graphics hardware is presented. The proposed method is named “quasi-convolution pyramidal blurring” since the resulting effect is very close to image blurring based on a convolution filter for many applications.
Resumo:
In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.
Resumo:
Coordinated eye and head movements simultaneously occur to scan the visual world for relevant targets. However, measuring both eye and head movements in experiments allowing natural head movements may be challenging. This paper provides an approach to study eye-head coordination: First, we demonstra- te the capabilities and limits of the eye-head tracking system used, and compare it to other technologies. Second, a beha- vioral task is introduced to invoke eye-head coordination. Third, a method is introduced to reconstruct signal loss in video- based oculography caused by cornea reflection artifacts in order to extend the tracking range. Finally, parameters of eye- head coordination are identified using EHCA (eye-head co- ordination analyzer), a MATLAB software which was developed to analyze eye-head shifts. To demonstrate the capabilities of the approach, a study with 11 healthy subjects was performed to investigate motion behavior. The approach presented here is discussed as an instrument to explore eye-head coordination, which may lead to further insights into attentional and motor symptoms of certain neurological or psychiatric diseases, e.g., schizophrenia.
Resumo:
Iowa State University freshman beanie, c. 1918. GoalTo design a housing which would support and protect the beanie, and would also allow the beanie to be viewed without being handled. TreatmentA custom, cloth-covered box with Velcro-supported, drop-down sides was constructed to fit the dimensions of a museum-quality hat stand.
Resumo:
Only a few sites in the Alps have produced archaeological finds from melting ice. To date, prehistoric finds from four sites dating from the Neolithic period, the Bronze Age, and the Iron Age have been recovered from small ice patches (Schnidejoch, Lötschenpass, Tisenjoch, and Gemsbichl/Rieserferner). Glaciers, on the other hand, have yielded historic finds and frozen human remains that are not more than a few hundred years old (three glacier mummies from the 16th to the 19th century and military finds from World Wars I and II). Between 2003 and 2010, numerous archaeological finds were recovered from a melting ice patch on the Schnidejoch in the Bernese Alps (Cantons of Berne and Valais, Switzerland). These finds date from the Neolithic period, the Early Bronze Age, the Iron Age, Roman times, and the Middle Ages, spanning a period of 6000 years. The Schnidejoch, at an altitude of 2756 m asl, is a pass in the Wildhorn region of the western Bernese Alps. It has yielded some of the earliest evidence of Neolithic human activity at high altitude in the Alps. The abundant assemblage of finds contains a number of unique artifacts, mainly from organic materials like leather, wood, bark, and fibers. The site clearly proves access to high-mountain areas as early as the 5th millennium BC, and the chronological distribution of the finds indicates that the Schnidejoch pass was used mainly during periods when glaciers were retreating.
Resumo:
We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition — at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour.
Resumo:
Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration