990 resultados para propyl gallate(PG)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), a protected endangered species, is the sole freshwater subspecies of finless porpoise, living only in the middle and lower reaches of the Yangtze River, China, and its appended lakes. Its population has decreased sharply to 1,400 because of human activities, including environmental contamination. In the present study, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in the blubber, liver, kidney, stomach, small intestine, and brains of five individual Yangtze finless porpoises collected from 1998 to 2004. The results showed PCB concentrations ranged from 0.06 to 1.89 mu g/g lipid weight in the organs and consisted mainly of penta-, hexa-. and decachlorinated biphenyls. The PBDE concentrations were between 5.32 and 72.76 ng/g lipid weight. Tetra-, penta-, and hexabrominated diphenyl ethers were the major homologues. The PCDD/F concentrations ranged from 65 to 1,563 pg/g lipid weight, and their predominant homologues were penta- and hexachlorinated dibenzofurans and hepta- and octachlorinated dibenzo-p-dioxins. The hazard quotients (HQs) based on toxic equivalency were determined to be greater than one in all individuals for PCBs, for PCDD/Fs, and for PCBs and PCDD/Fs In addition, HQs would be higher if PBDEs were included. The results suggest that reduction of environmental contamination may contribute greatly to protecting this highly endangered species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. METHODS: The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. RESULTS: All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. CONCLUSIONS: The application of PEDOT polymers has evolved as a new perspective to advance stents. GENERAL SIGNIFICANCE: In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. OBJECTIVE AND METHODS: In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. RESULTS: The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was aimed at the study of some physical properties of two current light-cured dental resin composites, Rok (hybrid) and Ice (nanohydrid). As filler they both contain strontium aluminosilicate particles, however, with different size distribution, 40 nm-2.5 mum for Rok and 10 nm-1 mum for Ice. The resin matrix of Rok consists of UDMA, that of Ice of UDMA, Bis-EMA and TEGDMA. Degree of conversion was determined by FT-IR analysis. The flexural strength and modulus were measured using a three-point bending set-up according to the ISO-4049 specification. Sorption, solubility and volumetric change were measured after storage of composites in water or ethanol/water (75 vol%) for 1 day, 7 or 30 days. Thermogravimetric analysis was performed in air and nitrogen atmosphere from 30 to 700 degrees C. Surface roughness and morphology of the composites was studied by atomic force microscopy (AFM). The degree of conversion was found to be 56.9% for Rok and 61.0% for Ice. The flexural strength of Rok does not significantly differ from that of Ice, while the flexural modulus of Rok is higher than that of Ice. The flexural strengths of Rok and Ice did not show any significant change after immersion in water or ethanol solution for 30 days. The flexural modulus of Rok and Ice did not show any significant change either after immersion in water for 30 days, while it decreased significantly, even after 1 day immersion, in ethanol solution. Ice sorbed a higher amount of water and ethanol solution than Rok and showed a higher volume increase. Thermogravimetric analysis showed that Rok contains about 80 wt% inorganic filler and Ice about 75 wt%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the development of a drug-loaded triple-layer platform consisting of thin film biodegradable polymers, in a properly designed form for the desired gradual degradation. Poly(dl-lactide-co-glycolide) (PLGA (65:35), PLGA (75:25)) and polycaprolactone (PCL) were grown by spin coating technique, to synthesize the platforms with the order PCL/PLGA (75:25)/PLGA (65:35) that determine their degradation rates. The outer PLGA (65:35) layer was loaded with dipyridamole, an antiplatelet drug. Spectroscopic ellipsometry (SE) in the Vis-far UV range was used to determine the nanostructure, as well as the content of the incorporated drug in the as-grown platforms. In situ and real-time SE measurements were carried out using a liquid cell for the dynamic evaluation of the fibrinogen and albumin protein adsorption processes. Atomic force microscopy studies justified the SE results concerning the nanopores formation in the polymeric platforms, and the dominant adsorption mechanisms of the proteins, which were defined by the drug incorporation in the platforms. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible-far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we compare the performance of organic solar cells, based on the bulk heterojunction system of P3HT:PCBM when adequate silver nanoparticles (NPs) are incorporated in two distinct places among the device structure. Introduction of NPs on top of the transparent anode revealed better overall performance with an increased efficiency of 17%. Alternatively, placing the NPs on top of the active photovoltaic layer resulted to 25% higher photo-current generation albeit with inferior electrical characteristics (i.e series and shunt resistance). Our findings suggest that enhanced scattering to non-specular directions from NPs site is maximized when penetrating light meets the particles after the polymer blend, but even this mechanism is not sufficient enough to explain the enhanced short circuit current observed. A second mechanism should be feasible; that is plasmon enhancement which is more efficient in the case where NPs are in direct contact with the polymer blend. J-V characteristics measured in the dark showed that NPs placed on top of the ITO film act as enhanced hole conducting sites, as evident by the lower series resistance values in these cells, suggesting this mechanism as more significant in this case. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical, structural and electrical properties of poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) thin films printed by roll-to-roll gravure have been investigated. Corona treatment has been applied to enhance the adhesion of PEDOT:PSS on PolyEthylene Terephthalate (PET) web. It has been found that there was a stronger in-depth surface modification of PET with the increase of corona efficiency; however, the adhesion of PEDOT:PSS was not actually affected. Also, Spectroscopic Ellipsometry and Atomic Force Microscopy have been used to extract information on the mechanisms that define PEDOT:PSS properties. The increase of the drying temperature of the PEDOT:PSS films has been found to reduce the remaining water inside the films and lead to the decrease of the PEDOT:PSS particles size. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PET/SiO2 layers were chemically modified to maintain immobilization of functional single molecules. GFP molecules provide an ideal system due to their stability and intrinsic fluorescence. GFP in vivo biotinylated within its NH2-terminal region and attached on the substrate via the biotinstreptavidin bond was further investigated with confocal microscopy, atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). AFM revealed monolayered donut-like structures representing assemblies of biotinstreptavidinbiotinGFP immobilized onto PET/SiO2 surfaces via mPEG. In particular, regions with an approximate height of 12 nm, which approaches the molecular dimensions of the above complex given by molecular modeling, could be detected. The dimensions of the donut-like structures suggest a close-to-each-other positioning of the GFP molecules - which, however, retain their functionality, as evidenced by confocal microscopy. © 2011 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work specific film structures of Li-Nb-O/Li/Li-Nb-O are investigated by AC Impedance Spectroscopy measurements at different temperatures. This gives the opportunity to investigate properties of the material itself and, at the same time, to consider the influence of the grain boundaries on the ionic behavior of the polycrystalline Lithium Niobate. On the other hand, LiNbO3/Li/Cu multi-layers are studied as electrolyte/anode bi-layers and potential parts of "Li-free" microbatteries. The Li deficiency in the as deposited Li-Nb-O films is cured by forming a "sandwich" of Li-Nb-O/Li/Li-Nb-O, which after annealing becomes ionic conductor. The electrical behavior of an annealed film depends on two sources. The first is due to properties of the material itself and the second is based on the network of the grain boundaries. The average size of the grains is strongly influenced by the structure of the ohmic-contact/substrate. The electrical behavior of the electrolyte/anode interface of the "Li-free" structure LiNbO3/Li/Cu/Au is very similar to the impedance measurements of the single LiNbO3 single films. The whole multilayer structure, though, presents a third relaxation time which is consistent of a small resistance. This resistance is independent of temperature and it seems that is due to the metallic interface Li/Cu/Au. © 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured polymer-fullerene thin films are among the most prominent materials for application in high efficient polymer solar cells. Specifically, poly(3-hexylthiophene) (P3HT) and fullerene derivatives (PCBM) blends are used as the donor/acceptor materials forming a bulk heterojunction. Although P3HT:PCBM properties have been extensively studied, less light has been set on its nanomechanical properties, which affect the device service life. In this work Atomic Force Acoustic Microscopy (AFAM), Atomic Force Spectroscopy and Nanoindentation were used to study the effect of the fullerene presence and the annealing on the P3HT:PCBM nanomechanical behavior. The P3HT:PCBM thin films were prepared by spin coating on glass substrates and then annealed at 100 °C and 145 °C for 30 min. Large phase separation was identified by optical and Atomic Force Microscopy (AFM) for the annealed samples. Needle-like PCBM crystals were formed and an increase of the polymer crystallinity degree with the increase of the annealing temperature was confirmed by X-ray diffraction. AFAM characterization revealed the presence of aggregates close to stiff PCBM crystals, possibly consisting of amorphous P3HT material. AFM force-distance curves showed a continuous change in stiffness in the vicinity of the PCBM crystals, due to the PCBM depletion near its crystals, and the AFM indentation provided qualitative results about the changes in P3HT nanomechanical response after annealing. © 2011 Elsevier B.V. All rights reserved.