971 resultados para pressure compensated flow control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lack of the physiological nocturnal fall in blood pressure (BP) has been found in diabetics and it seems to be related to the presence of diabetic complications. The present study examined the changes in the nocturnal BP pattern of 8 normotensive insulin-dependent diabetic adolescents without nephropathy following improvement in glycemic control induced by an 8-day program of adequate diet and exercise. The same number of age- and sex-matched control subjects were studied. During the first and eighth nights of the program, BP was obtained by ambulatory BP monitoring. After a 10-min rest, 3 BP and heart rate (HR) recordings were taken and the mean values were considered to represent their awake values. The monitor was programmed to cuff insufflation every 20 min from 10:00 p.m. to 7:00 a.m. The glycemic control of diabetics improved since glycemia (212.0 ± 91.5 to 140.2 ± 69.1 mg/dl, P<0.03), urine glucose (12.7 ± 11.8 to 8.6 ± 6.4 g/24 h, P = 0.08) and insulin dose (31.1 ± 7.7 to 16.1 ± 9.7 U/day, P<0.01) were reduced on the last day. The mean BP of control subjects markedly decreased during the sleeping hours of night 1 (92.3 ± 6.4 to 78.1 ± 5.0 mmHg, P<0.001) and night 8 (87.3 ± 6.7 to 76.9 ± 3.6 mmHg, P<0.001). Diabetic patients showed a slight decrease in mean BP during the first night. However, the fall in BP during the nocturnal period increased significantly on the eighth night. The average awake-sleep BP variation was significantly higher at the end of the study (4.2 vs 10.3%, P<0.05) and this ratio turned out to be similar to that found in the control group (10.3 vs 16.3%). HR variation also increased on the eighth night in the diabetics. Following the metabolic improvement obtained at the end of the period, the nocturnal BP variation of diabetics was close to the normal pattern. We suggest that amelioration of glycemic control may influence the awake-sleep BP and HR differences. This effect may be due at least in part to an attenuated insulin stimulation of sympathetic activity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed that acute blood volume expansion increases the gastroduodenal resistance to the flow of liquid in anesthetized dogs, while retraction decreases it (Santos et al. (1991) Acta Physiologica Scandinavica, 143: 261-269). This study evaluates the effect of blood volume expansion and retraction on the gastric emptying of liquid in awake rats using a modification of the technique of Scarpignato (1980) (Archives Internationales de Pharmacodynamie et de Therapie, 246: 286-294). Male Wistar rats (180-200 g) were fasted for 16 h with water ad libitum and 1.5 ml of the test meal (0.5 mg/ml phenol red solution in 5% glucose) was delivered to the stomach immediately after random submission to one of the following protocols: 1) normovolemic control (N = 22), 2) expansion (N = 72) by intravenous infusion (1 ml/min) of Ringer-bicarbonate solution, volumes of 1, 2, 3 or 5% body weight, or 3) retraction (N = 22) by controlled bleeding (1.5 ml/100 g). Gastric emptying of liquid was inhibited by 19-51.2% (P<0.05) after blood volume expansion (volumes of 1, 2, 3 or 5% body weight). Blood volume expansion produced a sustained increase in central venous pressure while mean arterial pressure was transiently increased during expansion (P<0.05). Blood volume retraction increased gastric emptying by 28.5-49.9% (P<0.05) and decreased central venous pressure and mean arterial pressure (P<0.05). Infusion of the shed blood 10 min after bleeding reversed the effect of retraction on gastric emptying. These findings suggest that gastric emptying of liquid is subject to modulation by the blood volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD) and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100%) was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the effect of exercise intensity on post-exercise cardiovascular responses, 12 young normotensive subjects performed in a randomized order three cycle ergometer exercise bouts of 45 min at 30, 50 and 80% of VO2peak, and 12 subjects rested for 45 min in a non-exercise control trial. Blood pressure (BP) and heart rate (HR) were measured for 20 min prior to exercise (baseline) and at intervals of 5 to 30 (R5-30), 35 to 60 (R35-60) and 65 to 90 (R65-90) min after exercise. Systolic, mean, and diastolic BP after exercise were significantly lower than baseline, and there was no difference between the three exercise intensities. After exercise at 30% of VO2peak, HR was significantly decreased at R35-60 and R65-90. In contrast, after exercise at 50 and 80% of VO2peak, HR was significantly increased at R5-30 and R35-60, respectively. Exercise at 30% of VO2peak significantly decreased rate pressure (RP) product (RP = HR x systolic BP) during the entire recovery period (baseline = 7930 ± 314 vs R5-30 = 7150 ± 326, R35-60 = 6794 ± 349, and R65-90 = 6628 ± 311, P<0.05), while exercise at 50% of VO2peak caused no change, and exercise at 80% of VO2peak produced a significant increase at R5-30 (7468 ± 267 vs 9818 ± 366, P<0.05) and no change at R35-60 or R65-90. Cardiovascular responses were not altered during the control trial. In conclusion, varying exercise intensity from 30 to 80% of VO2peak in young normotensive humans did not influence the magnitude of post-exercise hypotension. However, in contrast to exercise at 50 and 80% of VO2peak, exercise at 30% of VO2peak decreased post-exercise HR and RP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies demonstrate that, within the ventral medullary surface (VMS), excitatory amino acids are necessary components of the neural circuits involved in the tonic and reflex control of respiration and circulation. In the present study we investigated the cardiorespiratory effects of unilateral microinjections of the broad spectrum glutamate antagonist kynurenic acid (2 nmol/200 nl) along the VMS of urethane-anesthetized rats. Within the VMS only one region was responsive to this drug. This area includes most of the intermediate respiratory area, partially overlapping the rostral ventrolateral medulla (IA/RVL). When microinjected into the IA/RVL, kynurenic acid produced a respiratory depression, without changes in mean arterial pressure or heart rate. The respiratory depression observed was characterized by a decrease in ventilation, tidal volume and mean inspiratory flow and an increase in respiratory frequency. Therefore, the observed respiratory depression was entirely due to a reduction in the inspiratory drive. Microinjections of vehicle (200 nl of saline) into this area produced no significant changes in breathing pattern, blood pressure or heart rate. Respiratory depression in response to the blockade of glutamatergic receptors inside the rostral VMS suggests that neurons at this site have an endogenous glutamatergic input controlling the respiratory cycle duration and the inspiratory drive transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the flow-volume curves of 50 patients with complaints of snoring and daytime sleepiness in treatment at the Pneumology Unit of the University Hospital of Brasília. The total group was divided into snorers without obstructive sleep apnea (OSA) (N = 19) and snorers with OSA (N = 31); the patients with OSA were subdivided into two groups according to the apnea/hypopnea index (AHI): AHI<20/h (N = 14) and AHI>20/h (N = 17). The control group (N = 10) consisted of nonsmoking subjects without complaints of snoring, daytime sleepiness or pulmonary diseases. The population studied (control and patients) consisted of males of similar age, height and body mass index (BMI); spirometric data were also similar in the four groups. There was no significative difference in the ratio of forced expiratory and inspiratory flows (FEF50%/FIF50%) in any group: control, 0.89; snorers, 1.11; snorers with OSA (AHI<20/h), 1.42, and snorers with OSA (AHI>20/h), 1.64. The FIF at 50% of vital capacity (FIF50%) of snoring patients with or without OSA was lower than the FIF50% of the control group (P<0.05): snorers 4.30 l/s; snorers with OSA (AHI<20/h) 3.69 l/s; snorers with OSA (AHI>20/h) 3.17 l/s and control group 5.48 l/s. The FIF50% of patients with severe OSA (AHI>20/h) was lower than the FIF50% of snorers without OSA (P<0.05): 3.17 l/s and 4.30 l/s, respectively. We conclude that 1) the FEF50%/FIF50% ratio is not useful for predicting OSA, and 2) FIF50% is decreased in snoring patients with and without OSA, suggesting that these patients have increased upper airway resistance (UAR).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report data showing that developed pressure (DPmax) may lead to opposite conclusion with respect to maximal developed circumferential wall stress (smax) when used to assess contractile function in left ventricle isovolumic preparations. Isovolumetric left ventricle preparations of rats with cardiac hypertrophy (H; N = 10) induced by isoproterenol administration showed higher DPmax (174 ± 14 mmHg) than control (C; N = 8) animals (155 ± 12 mmHg) or rats with regression (R; N = 8) of hypertrophy (144 ± 11 mmHg). In contrast, the estimated smax for C (145 ± 26 kdynes/cm2) and R (133 ± 17 kdynes/cm2) was higher than for H (110 ± 13 kdynes/cm2). According to Laplace's law, the opposite results of DPmax and smax may depend on the increased mass/volume left ventricle ratio of the hypertrophied hearts, which favored pressure generation. These results clearly show that DPmax should be used with caution to analyze systolic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcystin is a hepatotoxic peptide which inhibits protein phosphatase types 1 and 2A. The objective of the present study was to evaluate the physiopathologic effects of microcystin-LR in isolated perfused rat kidney. Adult Wistar rats (N = 5) of both sexes (240-280 g) were utilized. Microcystin-LR (1 µg/ml) was perfused over a period of 120 min, during which samples of urine and perfusate were collected at 10-min intervals to determine the levels of inulin, sodium, potassium and osmolality. We observed a significant increase in urinary flow with a peak effect at 90 min (control (C) = 0.20 ± 0.01 and treated (T) = 0.32 ± 0.01 ml g-1 min-1, P<0.05). At 90 min there was a significant increase in perfusate pressure (C = 129.7 ± 4.81 and T = 175.0 ± 1.15 mmHg) and glomerular filtration rate (C = 0.66 ± 0.07 and T = 1.10 ± 0.04 ml g-1 min-1) and there was a significant reduction in fractional sodium tubular transport at 120 min (C = 78.6 ± 0.98 and T = 73.9 ± 0.95%). Histopathologic analysis of the perfused kidneys showed protein material in the urinary space, suggestive of renal toxicity. These data demonstrate renal vascular, glomerular and urinary effects of microcystin-LR, indicating that microcystin acts directly on the kidney by probable inhibition of protein phosphatases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of sympathetic nerve activity in the changes in arterial blood pressure and renal function caused by the chronic administration of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, was examined in sham and bilaterally renal denervated rats. Several studies have demonstrated that sympathetic nerve activity is elevated acutely after L-NAME administration. To evaluate the role of renal nerve activity in L-NAME-induced hypertension, we compared the blood pressure response in four groups (N = 10 each) of male Wistar-Hannover rats weighing 200 to 250 g: 1) sham-operated vehicle-treated, 2) sham-operated L-NAME-treated, 3) denervated vehicle-treated, and 4) denervated L-NAME-treated rats. After renal denervation or sham surgery, one control week was followed by three weeks of oral administration of L-NAME by gavage. Arterial pressure was measured weekly in conscious rats by a tail-cuff method and renal function tests were performed in individual metabolic cages 0, 7, 14 and 21 days after the beginning of L-NAME administration. L-NAME (60 mg kg-1 day-1) progressively increased arterial pressure from 108 ± 6.0 to 149 ± 12 mmHg (P<0.05) in the sham-operated group by the third week of treatment which was accompanied by a fall in creatinine clearance from 336 ± 18 to 222 ± 59 µl min-1 100 g body weight-1 (P<0.05) and a rise in fractional urinary sodium excretion from 0.2 ± 0.04 to 1.62 ± 0.35% (P<0.05) and in sodium post-proximal fractional excretion from 0.54 ± 0.09 to 4.7 ± 0.86% (P<0.05). The development of hypertension was significantly delayed and attenuated in denervated L-NAME-treated rats. This was accompanied by a striking additional increase in fractional renal sodium and potassium excretion from 0.2 ± 0.04 to 4.5 ± 1.6% and from 0.1 ± 0.015 to 1.21 ± 0.37%, respectively, and an enhanced post-proximal sodium excretion compared to the sham-operated group. These differences occurred despite an unchanged creatinine clearance and Na+ filtered load. These results suggest that bilateral renal denervation delayed and attenuated the L-NAME-induced hypertension by promoting an additional decrease in tubule sodium reabsorption in the post-proximal segments of nephrons. Much of the hypertension caused by chronic NO synthesis inhibition is thus dependent on renal nerve activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haihdutuskiteytyksessä haihdutusolosuhteilla on suuri vaikutus kiteiden muodostumiseen, joten toivottujen kidemuotojen saamiseksi prosessia on hallittava tarkasti. Kandidaatintyön tavoitteena oli tutkia puhtaiden liuottimien ja karbamatsepiiniliuosten haihtumisvuota eri olosuhteissa. Lisäksi tutkittiin kiteytysolosuhteiden vaikutusta karbamatsepiinikiteiden muodostumiseen ja rakenteeseen. Puhtaille liuottimille kokeet suoritettiin ilman virtausnopeudella 0,2 m/s lämpötiloissa 30 ºC, 40 ºC, 50 ºC ja 60 ºC, sekä ilman virtausnopeudella 0,3 m/s lämpötiloissa 40 ºC ja 50 ºC. Karbamatsepiiniliuoksille kokeet suoritettiin ilman virtausnopeudella 0,2 m/s lämpötiloissa 30 ºC ja 60 ºC sekä ilman virtausnopeudella 0,3 m/s lämpötiloissa 40 ºC ja 50 ºC. Haihdutuskiteytys suoritettiin suorakulmaisessa haihdutuskammiossa, jonka toisessa päässä oli tuulettimet virtausnopeuden säätämiseksi. Koehuoneessa vallitsi normaali ilmanpaine, ilman suhteellinen kosteus vaihteli välillä 50–65 % ja huoneen lämpötila välillä 21,2–24,1 ºC. Kuivatut kiteet analysoitiin optisella mikroskoopilla. Kaikista karbamatsepiinin vesiliuoksista kiteytyi dihydraatti-muotoa. Muutokset haihdutusolosuhteissa vaikuttivat selvästi haihtumis-voihin ja muodostuvien kiteiden rakenteeseen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.