981 resultados para power exchange
Resumo:
The energy reform, which is happening all over the world, is caused by the common concern of the future of the humankind in our shared planet. In order to keep the effects of the global warming inside of a certain limit, the use of fossil fuels must be reduced. The marginal costs of the renewable sources, RES are quite high, since they are new technology. In order to induce the implementation of RES to the power grid and lower the marginal costs, subsidies were developed in order to make the use of RES more profitable. From the RES perspective the current market is developed to favor conventional generation, which mainly uses fossil fuels. Intermittent generation, like wind power, is penalized in the electricity market since it is intermittent and thus diffi-cult to control. Therefore, the need of regulation and thus the regulation costs to the producer differ, depending on what kind of generation market participant owns. In this thesis it is studied if there is a way for market participant, who has wind power to use the special characteristics of electricity market Nord Pool and thus reach the gap between conventional generation and the intermittent generation only by placing bids to the market. Thus, an optimal bid is introduced, which purpose is to minimize the regulation costs and thus lower the marginal costs of wind power. In order to make real life simulations in Nord Pool, a wind power forecast model was created. The simulations were done in years 2009 and 2010 by using a real wind power data provided by Hyötytuuli, market data from Nord Pool and wind forecast data provided by Finnish Meteorological Institute. The optimal bid needs probability intervals and therefore the methodology to create probability distributions is introduced in this thesis. In the end of the thesis it is shown that the optimal bidding improves the position of wind power producer in the electricity market.
Resumo:
The purpose of this study was to simulate and to optimize integrated gasification for combine cycle (IGCC) for power generation and hydrogen (H2) production by using low grade Thar lignite coal and cotton stalk. Lignite coal is abundant of moisture and ash content, the idea of addition of cotton stalk is to increase the mass of combustible material per mass of feed use for the process, to reduce the consumption of coal and to increase the cotton stalk efficiently for IGCC process. Aspen plus software is used to simulate the process with different mass ratios of coal to cotton stalk and for optimization: process efficiencies, net power generation and H2 production etc. are considered while environmental hazard emissions are optimized to acceptance level. With the addition of cotton stalk in feed, process efficiencies started to decline along with the net power production. But for H2 production, it gave positive result at start but after 40% cotton stalk addition, H2 production also started to decline. It also affects negatively on environmental hazard emissions and mass of emissions/ net power production increases linearly with the addition of cotton stalk in feed mixture. In summation with the addition of cotton stalk, overall affects seemed to negative. But the effect is more negative after 40% cotton stalk addition so it is concluded that to get maximum process efficiencies and high production less amount of cotton stalk addition in feed is preferable and the maximum level of addition is estimated to 40%. Gasification temperature should keep lower around 1140 °C and prefer technique for studied feed in IGCC is fluidized bed (ash in dry form) rather than ash slagging gasifier
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
The furrow openers for no-till system should be easy to penetrate the soil, generate low levels of soil mobilization and require a little traction force. Thus, the aim of this research was to compare six hoe-type furrow openers, four of industrial manufacturing and two handcrafted models, which were used in planters in the region of Pelotas, Brazil. The parameters for comparison among these furrow openers were the horizontal (Fh) and vertical (Fv) forces acting on the tip of the hoe and the cross-sectional area mobilized in the furrow. The experimental design was randomized, with six treatments (furrow openers) from T1 to T6, with four repetitions, constituted by their passage through plots of 20 x 3 m. The force data were collected by load cells and a signal conditioner. The determination of the mobilized area in the furrow was done by a micro soil profilometer. It was concluded that the furrow openers T1, T4 and T6 presented the lowest values of horizontal force (statistically equal and ranging between 1,034 and 1,230 N) and that T1 and T2 produced the highest vertical forces downwards (statistically identical and varying between 749 and 845 N). The furrow openers T1, T2, T4, T5 and T6 generated soil mobilization statistically equal and between 0.006993 and 0.008933 m².
Resumo:
Markku Laitinen's keynote presentation in the QQML conference in Limerick, Ireland the 23rd of April, 2012.
Resumo:
In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.
Resumo:
Green IT is a term that covers various tasks and concepts that are related to reducing the environmental impact of IT. At enterprise level, Green IT has significant potential to generate sustainable cost savings: the total amount of devices is growing and electricity prices are rising. The lifecycle of a computer can be made more environmentally sustainable using Green IT, e.g. by using energy efficient components and by implementing device power management. The challenge using power management at enterprise level is how to measure and follow-up the impact of power management policies? During the thesis a power management feature was developed to a configuration management system. The feature can be used to automatically power down and power on PCs using a pre-defined schedule and to estimate the total power usage of devices. Measurements indicate that using the feature the device power consumption can be monitored quite precisely and the power consumption can be reduced, which generates electricity cost savings and reduces the environmental impact of IT.
Resumo:
Reliable detection of intrapartum fetal acidosis is crucial for preventing morbidity. Hypoxia-related changes of fetal heart rate variability (FHRV) are controlled by the autonomic nervous system. Subtle changes in FHRV that cannot be identified by inspection can be detected and quantified by power spectral analysis. Sympathetic activity relates to low-frequency FHRV and parasympathetic activity to both low- and high-frequency FHRV. The aim was to study whether intra partum fetal acidosis can be detected by analyzing spectral powers of FHRV, and whether spectral powers associate with hypoxia-induced changes in the fetal electrocardiogram and with the pH of fetal blood samples taken intrapartum. The FHRV of 817 R-R interval recordings, collected as a part of European multicenter studies, were analyzed. Acidosis was defined as cord pH ≤ 7.05 or scalp pH ≤ 7.20, and metabolic acidosis as cord pH ≤ 7.05 and base deficit ≥ 12 mmol/l. Intrapartum hypoxia increased the spectral powers of FHRV. As fetal acidosis deepened, FHRV decreased: fetuses with significant birth acidosis had, after an initial increase, a drop in spectral powers near delivery, suggesting a breakdown of fetal compensation. Furthermore, a change in excess of 30% of the low-to-high frequency ratio of FHRV was associated with fetal metabolic acidosis. The results suggest that a decrease in the spectral powers of FHRV signals concern for fetal wellbeing. A single measure alone cannot be used to reveal fetal hypoxia since the spectral powers vary widely intra-individually. With technical developments, continuous assessment of intra-individual changes in spectral powers of FHRV might aid in the detection of fetal compromise due to hypoxia.
Resumo:
All over the world power systems become bigger and bigger every day. New equipment is installed, new feeders are constructed, new power units are installed. Some old elements of the network, however, are not changed in time. As a result, “bottlenecks” for capacity transmission can occur. By locked power problem the situation when a power plant has installed capacity exceeding the power it can actually deliver is usually meant. Regime, scheme or even technical restrictions-related issues usually cause this kind of problem. It is really important, since from the regime point of view it is typical decision to have a mobile capacity reserve, in case of malfunctions. And, what can be even more significant, power plant owner (JSC Fortum in our case) losses his money because of selling less electrical energy. The goal of master`s thesis is to analyze the current state of Chelyabinsk power system and the CHP-3 (Combined Heat and Power plant) in particular in relation with it`s ability to deliver the whole capacity of the CHP in it`s existing state and also taking into consideration the prospect of power unit 3 installation by the fourth quarter of 2010. The thesis contains some general information about the UPS of Russia, CPS of Ural, power system of Chelyabinsk and the Chelyabinsk region itself. Then the CHP-3 is described from technical point of view with it`s equipment observation. Regimes for the nowadays power system and for the system after the power unit 3 installation are reviewed. The problems occurring are described and, finally, a solution is offered.
Resumo:
Ion exchange membranes are indispensable for the separation of ionic species. They can discriminate between anions and cations depending on the type of fixed ionic group present in the membrane. These conventional ion exchange membranes (CIX) have exceptional ionic conductivity, which is advantageous in various electromembrane separation processes such as electrodialysis, electrodeionisation and electrochemical ion exchange. The main disadvantage of CIX membranes is their high electrical resistance owing to the fact that the membranes are electronically non conductive. An alternative can be electroactive ion exchange membranes, which are ionically and electronically conducting. Polypyrrole (PPy) is a type of electroactive ion exchange material as well as a commonly known conducting polymer. When PPy membranes are repeatedly reduced and oxidised, ions are pumped through the membrane. The main aim of this thesis was to develop electroactive cation transport membranes based on PPy for the selective transport of divalent cations. Membranes developed composed of PPy films deposited on commercially available support materials. To carry out this study, cation exchange membranes based on PPy doped with immobile anions were prepared. Two types of dopant anions known to interact with divalent metal ions were considered, namely 4-sulphonic calix[6]arene (C6S) and carboxylated multiwalled carbon nanotubes (CNT). The transport of ions across membranes containing PPy doped with polystyrene sulphonate (PSS) and PPy doped with para-toluene sulphonate (pTS) was also studied in order to understand the nature of ion transport and permeability across PPy(CNT) and PPy(C6S) membranes. In the course of these studies, membrane characterisation was performed using electrochemical quartz crystal microbalance (EQCM) and scanning electron microscopy (SEM). Permeability of the membranes towards divalent cations was explored using a two compartment transport cell. EQCM results demonstrated that the ion exchange behaviour of polypyrrole is dependent on a number of factors including the type of dopant anion present, the type of ions present in the surrounding medium, the scan rate used during the experiment and the previous history of the polymer film. The morphology of PPy films was found to change when the dopant anion was varied and even when the thickness of the film was altered in some cases. In nearly all cases the permeability of the membranes towards metal ions followed the order K+ > Ca2+ > Mn2+. The one exception was PPy(C6S), for which the permeability followed the order Ca2+ ≥ K+ > Mn2+ > Co2+ > Cr3+. The above permeability sequences show a strong dependence on the size of the metal ions with metal ions having the smallest hydrated radii exhibiting the highest flux. Another factor that affected the permeability towards metal ions was the thickness of the PPy films. Films with the least thickness showed higher metal ion fluxes. Electrochemical control over ion transport across PPy(CNT) membrane was obtained when films composed of the latter were deposited on track-etched Nucleopore® membranes as support material. In contrast, the flux of ions across the same film was concentration gradient dependent when the polymer was deposited on polyvinylidene difluoride membranes as support material. However, electrochemical control over metal ion transport was achieved with a bilayer type of PPy film consisting of PPy(pTS)/PPy(CNT), irrespective of the type of support material. In the course of studying macroscopic charge balance during transport experiments performed using a two compartment transport cell, it was observed that PPy films were non-permselective. A clear correlation between the change in pH in the receiving solution and the ions transported across the membrane was observed. A decrease in solution pH was detected when the polymer membrane acted primarily as an anion exchanger, while an increase in pH occurred when it functioned as a cation exchanger. When there was an approximately equal flux of anions and cations across the polymer membrane, the pH in the receiving solution was in the range 6 - 8. These observations suggest that macroscopic charge balance during the transport of cations and anions across polypyrrole membranes was maintained by introduction of anions (OH-) and cations (H+) produced via electrolysis of water.
Resumo:
Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.