979 resultados para potato-starch
Resumo:
Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10) and Desirée (ATPase/ADPase = 1) isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.
Resumo:
Two attenuated bacillus Calmette-Guérin (BCG) preparations derived from the same Moreau strain, Copenhagen but grown in Sauton medium containing starch and bacto-peptone (onco BCG, O-BCG), or asparagine (intradermal BCG, ID-BCG), exhibited indistinguishable DNA sequences and bacterial morphology. The number of viable bacilli recovered from spleen, liver and lungs was approximately the same in mice inoculated with the vaccines and was similarly reduced (over 90%) in mice previously immunized with either BCG vaccine. The humoral immune response evoked by the vaccines was, however, distinct. Spleen cell proliferation accompanying the growth of bacilli in tissue was significantly higher in mice inoculated with O-BCG. These cells proliferated in vitro upon challenge with the corresponding BCG extract. Previous cell treatment with mAb anti-CD4 T cells abolished this effect. Anti-BCG antibodies, as assayed either in serum by ELISA or by determining the number of antibody-producing spleen cells by the spot-ELISA method, were significantly higher in mice inoculated with ID-BCG. Anti-BCG antibodies were detected in all immunoglobulin classes, but they were more prevalent in IgG with the following distribution among its isotypes: IgG1>(IgG2a = IgG2b)>IgG3. When some well-characterized Mycobacterium tuberculosis antigens were used as substitutes for BCG extracts in ELISA, although antibodies against the 65-kDa and 96-kDa proteins were detected significantly, antibodies against the 71-kDa, 38-kDa proteins and lipoarabinomannan were only barely detected or even absent. These results indicate that BCG bacilli cultured in Sauton-asparagine medium permitted the multiplication of bacilli, tending to induce a stronger humoral immune response as compared with bacilli grown in Sauton-starch/bacto-peptone-enriched medium.
Resumo:
Until recently, dietary sources of nucleotides were thought not to be essential for good nutrition. Certain states with higher metabolic demands may require larger amounts that cannot be provided by endogenous production. The objective of the present study was to determine the action of nucleotides on the recovery from lactose-induced diarrhea in weaned rats. Thirty-six weanling Fisher rats were divided into two groups. Group 1 received a standard diet and group 2 received a diet containing lactose in place of starch. On the 10th day, six animals per group were sacrificed for histopathological evaluation. The remaining animals were divided into two other subgroups, each with 6 animals, receiving a control diet, a control diet with nucleotides (0.05% adenosine monophosphate, 0.05% guanosine monophosphate, 0.05% cytidine monophosphate, 0.05% uridine monophosphate and 0.05% inosine monophosphate), a diet with lactose, and a diet with lactose and nucleotides. On the 32nd day of the experiment all animals were sacrificed. Animals with diarrhea weighed less than animals without diarrhea. The introduction of nucleotides did not lead to weight gain. Mean diet consumption was lower in the group that continued to ingest lactose, with the group receiving lactose plus nucleotides showing a lower mean consumption. Animals receiving lactose had inflammatory reaction and deposits of periodic acid-Schiff-positive material in intestinal, hepatic and splenic tissues. The introduction of nucleotides led to an improvement of the intestinal inflammatory reaction. In lactose-induced diarrhea, when the stimulus is maintained - lactose overload - the nucleotides have a limited action on the weight gain and on recovery of intestinal morphology, although they have a protective effect on hepatic injury and improve the inflammatory response.
Resumo:
The effects of Ringer lactate, 6% hydroxyethyl starch (HES) (130/0.4) or 4% succinylated gelatin solutions on perioperative coagulability were measured by thromboelastography (TEG). Seventy-five patients (ASA I-III) who were to undergo major orthopedic procedures performed under epidural anesthesia were included in the study. Patients were randomly divided into three groups of 25 each for the administration of maintenance fluids: group RL (Ringer lactate), group HES (6% HES 130/0.4), and group JEL (4% gelofusine solution). Blood samples were obtained during the perioperative period before epidural anesthesia (t1, baseline), at the end of the surgery (t2), and 24 h after the operation (t3). TEG data, reaction time (R), coagulation time (K), angle value (α), and maximum amplitude (MA) were recorded. TEG parameters changed from normal values in all patients. In group RL, R and K times decreased compared to perioperative values while the α angle and MA increased (P < 0.05). In group HES, R and K times increased, however, the α angle and MA decreased (P < 0.05). In group JEL, R time increased (P < 0.05), but K time, α angle and MA did not change significantly. In the present study, RL, 6% HES (130/0.4) and 4% JEL solutions caused changes in the coagulation system of all patients as measured by TEG, but these changes remained within normal limits.
Resumo:
Thirty samples of rough rice stored for 6, 12 and 24 months in government authorized warehouses of the state of Rio Grande do Sul, Brazil, were simultaneously collected. After milling of the product, 90 samples (30 of polished rice, 30 of rice bran and 30 of rice hull) were evaluated for their mycoflora, aflatoxigenic species and aflatoxin contamination. The following fungi, listed in decreasing order of frequency, were isolated on Potato-Dextrose Agar: Aspergillus spp., Nigrospora spp., Penicillium spp.; Fusarium spp.; Mucor spp.; Cladosporium spp.; Trichosporon spp. and non-sporulated fungi. The degree of fungal contamination (colony forming units per gram of product) was lowest in polished rice, increasing progressively in samples of rice bran and rice hull. Among the Aspergillus species, A. flavus and A. candidus were isolated most frequently. Of the A. flavus isolates, 52.6% strains were found to be toxigenic and produced only Group B aflatoxins. Analysis of the 90 samples did not reveal the presence of aflatoxins in the rice derivatives.
Resumo:
The soluble and insoluble cotyledon (SPF-Co and IPF-Co) and tegument (SPF-Te and IPF-Te) cell wall polymer fractions of common beans (Phaseolus vulgaris) were isolated using a chemical-enzymatic method. The sugar composition showed that SPF-Co was constituted of 38.6% arabinose, 23.4% uronic acids, 12.7% galactose, 11.2% xylose, 6.4% mannose and 6.1% glucose, probably derived from slightly branched and weakly bound polymers. The IPF-Co was fractionated with chelating agent (CDTA) and with increasing concentrations of NaOH. The bulk of the cell wall polymers (29.4%) were extracted with 4.0M NaOH and this fraction contained mainly arabinose (55.0%), uronic acid (18.9%), glucose (10.7%), xylose (10.3%) and galactose (3.4%). About 8.7% and 10.6% of the polymers were solubilised with CDTA and 0.01M NaOH respectively and were constituted of arabinose (52.0 and 45.9%), uronic acids (25.8 and 29.8%), xylose (9.6 and 10.2%), galactose (6.1 and 3.9%) and glucose (6.5 and 3.8%). The cell wall polymers were also constituted of small amounts (5.6 and 7.2%) of cellulose (CEL) and of non-extractable cell wall polymers (NECW). About 16.8% and 17.2% of the polymers were solubilised with 0.5 and 1.0M NaOH and contained, respectively, 92.1 and 90.7% of glucose derived from starch (IST). The neutral sugar and polymers solubilization profiles showed that weakly bound pectins are present mainly in SPF-Co (water-soluble), CDTA and 0.01-0.1M NaOH soluble fractions. Less soluble, highly cross-linked pectins were solubilised with 4.0M NaOH. This pectin is arabinose-rich, probably highly branched and has a higher molecular weight than the pectin present in SPF-Co, CDTA and 0.01-0.1M NaOH fractions.
Resumo:
O presente trabalho tem como objetivo determinar a influência das interações das gomas xantana e guar com o amido de milho de alto teor de amilose na textura de gel durante o armazenamento. Foram utilizadas amostras de amido milho Hylon VII® (71% de amilose, National Starch, goma guar (Higum 55I®, Rhodia) e goma xantana (Rhodigel 200®, Rhodia). Foram utilizadas diferentes concentrações das gomas guar e xantana, que variaram de 0 a 1%, de acordo com o delineamento experimental central composto rotacional. Em cada tratamento foram utilizadas 50g de amido com alto teor de amilose (Hylon VII), adicionadas das gomas. Estas amostras foram diluídas em água destilada e submetidas à agitação mecânica até completa dissolução. As soluções foram aquecidas até 95°C por 5 minutos para formação dos géis, os quais foram acondicionados em recipientes plásticos de 50mL e mantidos em temperatura de 5-10°C até 120h. Nos tempos T1 (24h), T2 (48h), T3 (72h), T4 (96h) e T5 (120h) de armazenamento foram feitas medidas da força máxima do gel de amilose em texturômetro (Stable Micro-System, Modelo TAX-T2). No período inicial, de 24 horas, a goma guar não apresentou influência positiva na redução da força do gel, sendo que a aplicação de goma xantana entre 0,7 e 1,0% apresentou os menores valores de força do gel de amilose. Após 120h de armazenamento, a força do gel de amilose diminuiu com a adição de 0,5-1,0% de goma xantana e 0-0,15% de goma guar.
Resumo:
Estudos clínicos demonstraram que amido resistente tem propriedades semelhantes a fibras e mostra benefícios fisiológicos em humanos, podendo resultar em prevenção de doenças. A Organização Mundial de Saúde (OMS) recomenda que cerca de 55% da energia ingerida seja proveniente de carboidratos. A preocupação com o tipo de carboidrato ingerido é importante, pois há fibras, por exemplo, que devem ser ingeridas de 25-30 g/dia/pessoa, e normalmente não o são. Por ser um alimento resistente à digestão e fermentado no intestino grosso, principalmente pelas bifidobactérias, o amido resistente é um alimento prebiótico. Durante a fermentação ocorre a produção de ácidos graxos de cadeia curta, principalmente o butirato, que contribui muito para a saúde do cólon, inibindo o crescimento de células cancerígenas devido à redução do pH no intestino grosso. Além disso, contribui para a produção da energia difusa progressiva (EDP), que é a energia liberada ao longo do tempo de uma digestão lenta, e para a queda do índice glicêmico dos alimentos, proporcionando uma menor resposta glicêmica e, conseqüentemente, uma resposta insulínica mais adequada, auxiliando no tratamento da diabete, principalmente do tipo 2 e mantendo o indivíduo com sensação de saciedade por um período maior de tempo. A National Starch Food Innovation possui o Hi-Maize 260 como amido resistente que, quando comparado com as fibras convencionais, apresenta muitas vantagens. É branco e possui sabor brando, tamanho pequeno de partícula e baixa capacidade de retenção de água, praticamente não altera a textura de produtos de baixa umidade como pães, macarrão, barrinha de cereais, etc, ao contrário das fibras convencionais, o que permite formular produtos com alto teor de fibras e ainda ser rotulado como simplesmente "amido de milho". Também apresenta teor calórico reduzido e pode ser usado como agente de corpo complementar em formulações com valor reduzido ou sem gordura.
Resumo:
Os amidos são amplamente utilizados em alimentos como molhos para salada, molhos e pratos prontos. Entretanto, as propriedades funcionais de amidos nativos não resistem aos processos estressantes tais como tratamento térmico, acidez e alto cisalhamento. Os amidos podem ser modificados quimicamente neste sentido, mas não atribuem ao alimento o rótulo de "natural". Uma outra opção é obter amidos naturais resistentes às condições de estresse. O objetivo do presente trabalho foi a avaliação de dois amidos que se comercializam rotulados como nativos e orgânicos frente ao tratamento térmico e à acidez. Suspensões dos amidos nativos funcionais orgânicos (9460 e 9560, National Starch and Chemical Industrial) preparadas numa concentração de 5% (peso/volume), foram acidificadas com ácido cítrico 1M ou autoclavadas a 121 °C por 30 minutos. O resultado dos tratamentos foi avaliado por microscopia óptica, pelas curvas de escoamento e pelos espectros mecânicos, obtidos por reologia estacionária e dinâmica. A acidez e o tratamento térmico aumentaram a estruturação dos géis dos amidos, que resistiram aos processos estressantes. Os géis apresentaram comportamento não newtoniano, (pseudoplástico) e tixotrópico. O comportamento pode ser modelado pela equação Lei da Potência ou Herschel-Bukley. Todos os géis apresentaram comportamento viscoelástico de gel fraco que foi preservado nos diversos tratamentos.
Resumo:
O objetivo do presente estudo foi avaliar os amidos de milho normal, ceroso e com alto teor de amilose, fabricados pela National Starch, por meio da determinação das suas características físico-químicas, morfológicas, térmicas e reológicas. O amido de milho com alto teor de amilose (AM) apresentou teor de amilose igual a 71%, sendo que os valores obtidos para o amido de milho normal (M) e o amido de milho ceroso (AP) foram de 27,8 e 1,8%, respectivamente. Traços de proteína e lipídios foram encontrados nas amostras. O amido de milho ceroso apresentou maior viscosidade máxima e uma menor tendência à retrogradação, se comparado ao amido de milho normal. O amido AP apresentou menor entalpia de gelatinização, como pode ser observado nas análises de calorimetria exploratória diferencial (DSC), na qual a temperatura de gelatinização foi de 75 °C e o ΔH de 3,34 J.g-1, e também na análise de RVA (Rapid Visco Analyser), em que a temperatura de pasta foi de 71 °C. Apresentando, dessa forma, valores inferiores aos verificados para os outros amidos. O valor do ΔH de retrogradação do amido AP, mostrou-se 25,8% inferior ao ΔH do amido M. O amido AM apresentou o valor de 26,38 J.g-1, demonstrando o maior envolvimento da molécula de amilose no processo de retrogradação. Isso também foi evidenciado pela medida da força dos géis: o gel de AM apresentou força 99,18% superior, retrogradando mais que os outros amidos. As análises de difração de raio X mostraram que os amidos de milho normal e ceroso apresentaram um padrão de difração do tipo A e o amido de milho com alto teor de amilose apresentou padrão do tipo B.
Resumo:
This work had as objective the development of gluten-free breads and muffins using rice flour and maize and cassava starches. From seven samples resulting from a Simplex-Centroid design, the sensory and instrumental analyses of specific volume, elasticity, and firmness were performed. For the sensory analysis, the optimized formulation contained 50% of rice flour and 50% of cassava starch, and for the instrumental evaluation, the optimal simultaneous point for the three conducted analyses were 20% of rice flour, 30% of cassava starch, and 50% of maize starch. A comparative analysis of specific volume, elasticity, firmness, and triangular test was performed with pre-baked, baked, and frozen bread. Physicochemical, nutritional, and microbiological analyses were performed for both bread and muffin according to the Brazilian legislation.
Resumo:
Sixteen common bean cultivars were compared concerning the physicochemical characteristics of their raw seeds in the course of two consecutive harvests, as well as the effect of storage conditions on starch and dietary fiber content of cooked beans. Using cluster analysis it was possible to identify groups of cultivars with different nutritional features. Bean cultivars were categorized into four different groups according either to their macronutrient content (crude protein-PROT, total dietary fiber-TDF, insoluble dietary fiber-IDF, soluble dietary fiber-SDF, digestible starch-DS, and resistant starch-RS) or to their micronutrient levels (Fe, Zn, Mn, Cu, Ca, Mg, and P). Guateian 6662 and Rio Tibagi appeared to be the most suitable cultivars to prevent nutritional deficiencies, because they had high PROT, DS, Fe, and Zn content. The high total dietary fiber and RS content of Iraí, Minuano, and TPS Bonito cultivars, and specially the high soluble fiber content of Guateian 6662 and Rio Tibagi cultivars suggests that they could have a beneficial role in controlling blood lipid and glucose levels. Cooked beans had a decrease in DS and an increase in RS content after storage (4 °C or -20 °C), but these changes were more prominent in beans that had low RS content before cooking than in those of high RS content. TDF, IDF, and SDF did not change after storage.
Resumo:
Four varieties of an Andean indigenous crop, quinoa (Chenopodium quinoa Willd.), were evaluated as a source of dietary fiber, phenolic compounds and antioxidant activity. The crops were processed by extrusion-cooking and the final products were analyzed to determine the dietary fiber, total polyphenols, radical scavenging activity, and in vitro digestibility of starch and protein. There were no significant differences in the contents of total dietary fiber between varieties of quinoa. In all cases, the contents of total and insoluble dietary fiber decreased during the extrusion process. At the same time, the content of soluble dietary fiber increased. The content of total phenolic compounds and the radical scavenging activity increased during the extrusion process in the case of all 4 varieties. There were significant differences between the varieties and the content of total polyphenols. The in vitro protein digestibility of quinoa varieties was between 76.3 and 80.5% and the in vitro starch digestibility was between 65.1 and 68.7%. Our study demonstrates that quinoa can be considered a good source of dietary fiber, polyphenols and other antioxidant compounds and that extrusion improves the nutritional value.
Resumo:
The purpose of this study was to follow-up color changes in low-calorie strawberry and guava jellies during storage. To this end, one formulation of each flavor was prepared varying the application of hydrocolloids (pectin and modified starch). The jellies were studied regarding pH, soluble solids, water activity and syneresis. In order to follow-up color changes, the samples remained stored for 180 days in chambers with controlled temperatures of 10 °C (control) and 25 °C (commercial), and color instrumental analyses (L*, a*, and b*) were performed every 30 days. Arrhenius model was applied to reaction speeds (k) at different temperatures, where light strawberry and guava jellies showed greater color changes when stored at 25 °C compared to the samples stored at 10 °C. Activation energy values between 13 and 15 kcal.mol-1 and Q10 values between 2.1 and 2.3 were obtained for light strawberry jelly and light guava jelly, respectively. Therefore, it was concluded that, with respect to color changes, every 10 °C temperature increase reduces light jellies shelf-life by half.
Resumo:
Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v) starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein) and 36 hours (325 U.mg-1 Protein), respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v) and corn steep liquor (0.3%, w/v) not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and protease production reached a maximum in 18 hours with levels of 401 U.mg-1 protein and 78 U.mg-1 protein, respectively. The compatibility of the enzymes produced with commercial laundry detergent was investigated. In the presence of Campeiro® detergent, α-amylase activity increased while protease activity decreased by about 27%. These enzymes improved the cleaning power of Campeiro® detergent since they were able to remove egg yolk and tomato sauce stains when used in this detergent.