986 resultados para polylysine hydrobromide modified cellulose film prepn
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.
Resumo:
Polyaniline-CaTiO3 nanocomposites with their various weight percentages were prepared by chemical oxidative in situ polymerization technique. The prepared composites were characterized by Fourier transform infrared spectroscopy, scanning electronic microscope, and X-ray diffraction. The temperature-dependent dc conductivity of polyaniline-CaTiO3 nanocomposite was studied within the range of 40-200 degrees C and found that 50 wt% shows high conductivity compared to other composites. Humidity sensor properties of polyaniline-CaTiO3 nanocomposite show better sensing properties and exhibit good linearity in sensing response curve, which discuss the implications of distortions and nonstoichiometry on their physical properties. Among all composites, 50 wt% of polyaniline-CaTiO3 nanocomposites show high sensitivity up to similar to 90% and their response-recovery times are 500 and 453 s, respectively.
Resumo:
This paper presents the after shock heated structural and morphological studies of chromium film coated on hypersonic test model as a passive drag reduction element. The structural changes and the composition of phases of chromium due to shock heating (2850 K) are characterized using X-ray diffraction studies. Surface morphology changes of chromium coating have been studied using scanning electron microscopy (SEM) before and after shock heating. Significant amount of chromium ablation and sublimation from the model surface is noticed from SEM micrographs. Traces of randomly oriented chromium oxides formed along the coated surface confirm surface reaction of chromium with oxygen present behind the shock. Large traces of amorphous chromium oxide phases are also observed.
Resumo:
Stable hollow microcapsules composed of sodium carboxymethyl cellulose (CMC) and poly (allylamine hydrochloride) (PAH) were produced by layer-by-layer adsorption of polyelectrolytes onto CaCO 3 microparticles. Subsequently the core was removed by addition of chelating agents for calcium ions. Zeta potential studies showed charge reversal with deposition of successive polyelectrolyte layers, indicating that the alternate electrostatic adsorption of polyelectrolytes of opposite charge was successfully achieved. The size and surface morphology of the capsules was characterized by various microscopy techniques. The pH responsive loading behavior was elucidated by confocal laser scanning microscopy (CLSM) studies using fluorescence labeled dextran (FITC-dextran) and labeled BSA (FITC-BSA). CLSM images confirmed the open (pH ≤ 6) and closed state (pH ≥ 7) of the capsules. A model drug bovine serum albumin (BSA) was spontaneously loaded below its isoelectric point into hollow microcapsules, where BSA is positively charged. The loading of the BSA into the microcapsules was found to be dependent on the feeding concentration and pH of the medium. 65 of the loaded BSA was released over 7h of which about 34 was released in the first hour. These findings demonstrate that (CMC/PAH) 2 hollow capsules can be further exploited as a potential drug delivery system.
Resumo:
Present work describes the characterization of commercially available ZnO and its electrochemical investigation of dopamine in the presence of ascorbic acid. ZnO was characterized by powder XRD, UV-visible absorption, fluorescence, infrared spectroscopy and scanning electron microscopy. The carbon paste electrode was modified with ZnO and ZnO/polyglycine for further electrochemical investigation of dopamine. The modified electrode shows good electrocatalytic activity towards the detection of dopamine with a reduction in overpotential. The ZnO/polyglycine modified carbon paste electrode (CPE/ZnO/Pgl) shows excellent electrochemical enhancement of peak currents for both dopamine (DA) and ascorbic acid (AA) and for simultaneous detection of DA in the presence of high concentrations of AA with 0.214 V oxidation peak potential differences between them at pH 7.4. From the scan rate variation and concentration, the oxidation of DA and AA was found to be adsorption-controlled. The use of CPE/ZnO/Pgl is demonstrated for the detection of DA in blood serum and injection samples. This journal is © The Royal Society of Chemistry 2012.
Resumo:
The thermally evaporated amorphous Sb40Se20S40 thin film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra supports the optical changes happening in the film due to light exposure.
Resumo:
ZnO nanoparticles (ZnO NPs) prepared by microwave heating technique are used to modify a gold electrode (ZnO/Au) for the hydrazine detection study. The synthesized product is well characterized by various techniques. Detailed electrochemical investigation of the oxidation of hydrazine on the ZnO/Au electrode in 0.02 M phosphate buffer solution (PBS) of pH 7.4 was carried out. A very low detection limit of 66 nM (S/N=4) and a wide linearity in current for a concentration range from 66.0X10-3 to 415 mu M was achieved by amperometry. The electrode was found to be stable for over a month when preserved in PBS.
Resumo:
Reflectance change due to binding of molecules on thin film structures has been exploited for bio-molecular sensing by several groups due to its potential in the development of sensitive, low cost, easy to fabricate, large area sensors with high multiplexing capabilities. However, all of these sensing platforms have been developed using traditional semiconductor materials and processing techniques, which are expensive. This article presents a method to fabricate disposable thin film reflectance biosensors using polymers, such as polycarbonate, which are 2-3 orders of magnitude cheaper than conventional semiconductor and dielectric materials and can be processed by alternate low cost methods, leading to significant reduction in consumable costs associated with diagnostic biosensing. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 degrees C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be similar to 0.5 eV and similar to 1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 degrees C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ge2Sb2Te5 (GST) films, one of the most suitable Chalcogenide alloys for Phase change Random Access Memory applications are studied for changes in sheet resistance, optical transmission, morphology and surface science by annealing at various transition temperatures. The crystallization leads to an increase of grain size and roughness in the films and the resistance changes to three orders of magnitude. Optical studies on GST films show distinct changes during phase transitions and the optical parameters are calculated. An increase of Tauc parameters B-1/2 indicates a reduction in disorder during phase transition. It is confirmed from XPS studies that Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases whereas Sb-Ge, Te-Te, Sb-Sb bonds are absent. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A temperature dependent neutron powder diffraction study, in conjunction with dielectric and ferroelectric characterization, of slightly Ca modified Na0.5Bi0.5TiO3 (NBT) revealed an instability with regard to a non-polar orthorhombic (Pbnm) distortion above room temperature. This intermediate orthorhombic phase has earlier been reported for unmodified NBT by electron diffraction studies, but has never been captured by global (x-ray/neutron) diffraction techniques. Calcium substitution seems to amplify the magnitude of this intermediate orthorhombic distortion thereby making the corresponding superlattice reflections become visible in the neutron diffraction pattern. The study revealed the following sequence of very complex structural evolution with temperature: Cc -> Cc + Pbnm -> Pbnm + P4/mbm -> P4/mbm -> Pm (3) over barm.
Resumo:
Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]
Resumo:
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.
Resumo:
The electrochemical profiles of exfoliated graphite electrodes (EG) and glassy carbon electrodes (GCE) were recorded using cyclic voltammetry and square wave voltammetry in the presence of various supporting electrolytes and Fe(CN)(6)](3-/4-), Ru(NH3)(6)](2+/3+), ferrocene redox probes. In the supporting electrolytes (KCl, H2SO4, NaOH, tetrabutylammoniumtetraflouroborate, phosphate buffers), the potential windows of EG were found in some cases to be about 200 mV larger than that of GCE. The electroactive surface area of EG was estimated to be 19.5 % larger than the GCE which resulted in higher peak currents on the EG electrode. Furthermore, EG was modified with various nanomaterials such as poly (propylene imine) dendrimer, gold nanoparticles, and dendrimer-gold nanoparticles composite. The morphologies of the modified electrodes were studied using scanning electron microscopy and their electrochemical reactivities in the three redox probes were investigated. The current and the reversibility of redox probes were enhanced with the presence of modifiers in different degrees with dendrimer and gold nanoparticles having a favorable edge.