992 resultados para planning authority
Resumo:
Enterprise Resource Planning is often endorsed as a means to facilitate strategic advantage for businesses. The scarcity of resources is the method by which some businesses maintain their position. However, the ubiquitous trend towards the adoption of Enterprise Resourcing Planning systems coupled with market saturation makes the promise of advantage less compelling. Reported in this paper is a proposed solution based upon semiotic theory that takes a typical Enterprise Resource Planning deployment scenario and shapes it according to the needs of people in post-implementation contexts to leverage strategic advantage in different ways.
Resumo:
The problem of planning multiple vehicles deals with the design of an effective algorithm that can cause multiple autonomous vehicles on the road to communicate and generate a collaborative optimal travel plan. Our modelling of the problem considers vehicles to vary greatly in terms of both size and speed, which makes it suboptimal to have a faster vehicle follow a slower vehicle or for vehicles to drive with predefined speed lanes. It is essential to have a fast planning algorithm whilst still being probabilistically complete. The Rapidly Exploring Random Trees (RRT) algorithm developed and reported on here uses a problem specific coordination axis, a local optimization algorithm, priority based coordination, and a module for deciding travel speeds. Vehicles are assumed to remain in their current relative position laterally on the road unless otherwise instructed. Experimental results presented here show regular driving behaviours, namely vehicle following, overtaking, and complex obstacle avoidance. The ability to showcase complex behaviours in the absence of speed lanes is characteristic of the solution developed.
Resumo:
Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.
Resumo:
The planning of semi-autonomous vehicles in traffic scenarios is a relatively new problem that contributes towards the goal of making road travel by vehicles free of human drivers. An algorithm needs to ensure optimal real time planning of multiple vehicles (moving in either direction along a road), in the presence of a complex obstacle network. Unlike other approaches, here we assume that speed lanes are not present and that different lanes do not need to be maintained for inbound and outbound traffic. Our basic hypothesis is to carry forward the planning task to ensure that a sufficient distance is maintained by each vehicle from all other vehicles, obstacles and road boundaries. We present here a 4-layer planning algorithm that consists of road selection (for selecting the individual roads of traversal to reach the goal), pathway selection (a strategy to avoid and/or overtake obstacles, road diversions and other blockages), pathway distribution (to select the position of a vehicle at every instance of time in a pathway), and trajectory generation (for generating a curve, smooth enough, to allow for the maximum possible speed). Cooperation between vehicles is handled separately at the different levels, the aim being to maximize the separation between vehicles. Simulated results exhibit behaviours of smooth, efficient and safe driving of vehicles in multiple scenarios; along with typical vehicle behaviours including following and overtaking.
Resumo:
Chaotic traffic, prevalent in many countries, is marked by a large number of vehicles driving with different speeds without following any predefined speed lanes. Such traffic rules out using any planning algorithm for these vehicles which is based upon the maintenance of speed lanes and lane changes. The absence of speed lanes may imply more bandwidth and easier overtaking in cases where vehicles vary considerably in both their size and speed. Inspired by the performance of artificial potential fields in the planning of mobile robots, we propose here lateral potentials as measures to enable vehicles to decide about their lateral positions on the road. Each vehicle is subjected to a potential from obstacles and vehicles in front, road boundaries, obstacles and vehicles to the side and higher speed vehicles to the rear. All these potentials are lateral and only govern steering the vehicle. A speed control mechanism is also used for longitudinal control of vehicle. The proposed system is shown to perform well for obstacle avoidance, vehicle following and overtaking behaviors.
Resumo:
In this paper we propose an alternative model of, what is often called, land value capture in the planning system. Based on development viability models, negotiations and policy formation regarding the level of planning obligations have taken place at the local level with little clear guidance on technique, approach and method. It is argued that current approaches are regressive and fail to reflect how the ability of sites to generate planning gain can vary over time and between sites. The alternative approach suggested here attempts to rationalise rather than replace the existing practice of development viability appraisal. It is based upon the assumption that schemes with similar development values should produce similar levels of return to the landowner, developer and other stakeholders in the development as well as similar levels of planning obligations in all parts of the country. Given the high level of input uncertainty in viability modelling, a simple viability model is ‘good enough’ to quantify the maximum level of planning obligations for a given level of development value. We have argued that such an approach can deliver a more durable, equitable, simpler, consistent and cheaper method for policy formation regarding planning obligations.
Resumo:
We present a framework for prioritizing adaptation approaches at a range of timeframes. The framework is illustrated by four case studies from developing countries, each with associated characterization of uncertainty. Two cases on near-term adaptation planning in Sri Lanka and on stakeholder scenario exercises in East Africa show how the relative utility of capacity vs. impact approaches to adaptation planning differ with level of uncertainty and associated lead time. An additional two cases demonstrate that it is possible to identify uncertainties that are relevant to decision making in specific timeframes and circumstances. The case on coffee in Latin America identifies altitudinal thresholds at which incremental vs. transformative adaptation pathways are robust options. The final case uses three crop–climate simulation studies to demonstrate how uncertainty can be characterized at different time horizons to discriminate where robust adaptation options are possible. We find that impact approaches, which use predictive models, are increasingly useful over longer lead times and at higher levels of greenhouse gas emissions. We also find that extreme events are important in determining predictability across a broad range of timescales. The results demonstrate the potential for robust knowledge and actions in the face of uncertainty.
Resumo:
This paper discusses concepts of space within the planning literature, the issues they give rise to and the gaps they reveal. It then introduces the notion of 'fractals' borrowed from complexity theory and illustrates how it unconsciously appears in planning practice. It then moves on to abstract the core dynamics through which fractals can be consciously applied and illustrates their working through a reinterpretation of the People's Planning Campaign of Kerala, India. Finally it highlights the key contribution of the fractal concept and the advantages that this conceptualisation brings to planning.
Resumo:
This article reviews the use of complexity theory in planning theory using the theory of metaphors for theory transfer and theory construction. The introduction to the article presents the author's positioning of planning theory. The first section thereafter provides a general background of the trajectory of development of complexity theory and discusses the rationale of using the theory of metaphors for evaluating the use of complexity theory in planning. The second section introduces the workings of metaphors in general and theory-constructing metaphors in particular, drawing out an understanding of how to proceed with an evaluative approach towards an analysis of the use of complexity theory in planning. The third section presents two case studies – reviews of two articles – to illustrate how the framework might be employed. It then discusses the implications of the evaluation for the question ‘can complexity theory contribute to planning?’ The concluding section discusses the employment of the ‘theory of metaphors’ for evaluating theory transfer and draws out normative suggestions for engaging in theory transfer using the metaphorical route.