970 resultados para penicillin-binding protein
Resumo:
OBJECTIVEIncrease in adipose cAMP response binding protein (CREB) activity promotes adipocyte dysfunction and systemic insulin resistance in obese mice. This is achieved by increasing the expression of activating transcription factor 3 (ATF3). In this study we investigated whether impaired expression of the inducible cAMP early repressor (ICER), a transcriptional antagonist of CREB, is responsible for the increased CREB activity in adipocytes of obese mice and humans.RESEARCH DESIGN AND METHODSTotal RNA and nuclear proteins were prepared from visceral adipose tissue (VAT) of human nonobese or obese subjects, and white adipose tissue (WAT) of C57Bl6-Rj mice that were fed with normal or high-fat diet for 16 weeks. The expression of genes was monitored by real-time PCR, Western blotting, and electromobility shift assays. RNA interference was used to silence the expression of Icer.RESULTSThe expression of Icer/ICER was reduced in VAT and WAT of obese humans and mice, respectively. Diminution of Icer/ICER was restricted to adipocytes and was accompanied by a rise of Atf3/ATF3 and diminution of Adipoq/ADIPOQ and Glut4/GLUT4. Silencing the expression of Icer in 3T3-L1 adipocytes mimicked the results observed in human and mice cells and hampered glucose uptake, thus confirming the requirement of Icer for appropriate adipocyte function.CONCLUSIONSImpaired expression of ICER contributes to elevation in CREB target genes and, therefore, to the development of insulin resistance in obesity.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
Translesion replication is carried out in Escherichia coli by the SOS-inducible DNA polymerase V (UmuC), an error-prone polymerase, which is specialized for replicating through lesions in DNA, leading to the formation of mutations. Lesion bypass by pol V requires the SOS-regulated proteins UmuD' and RecA and the single-strand DNA-binding protein (SSB). Using an in vitro assay system for translesion replication based on a gapped plasmid carrying a site-specific synthetic abasic site, we show that the assembly of a RecA nucleoprotein filament is required for lesion bypass by pol V. This is based on the reaction requirements for stoichiometric amounts of RecA and for single-stranded gaps longer than 100 nucleotides and on direct visualization of RecA-DNA filaments by electron microscopy. SSB is likely to facilitate the assembly of the RecA nucleoprotein filament; however, it has at least one additional role in lesion bypass. ATPgammaS, which is known to strongly increase binding of RecA to DNA, caused a drastic inhibition of pol V activity. Lesion bypass does not require stoichiometric binding of UmuD' along RecA filaments. In summary, the RecA nucleoprotein filament, previously known to be required for SOS induction and homologous recombination, is also a critical intermediate in translesion replication.
Resumo:
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.
Resumo:
Sm14 was the first fatty acid-binding protein homologue identified in helminths. Thereafter, members of the same family were identified in several helminth species, with high aminoacid sequence homology between them. In addition, immune crossprotection was also reported against Fasciola hepatica infection, in animals previously immunized with the Schistosoma mansoni vaccine candidate, r-Sm14. In the present study, data on preliminary sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis of nine different helminth extracts focusing the identification of Sm14 related proteins, is reported. Out of these, three extracts - Ascaris suum (males and females), Echinostoma paraensei, and Taenia saginata - presented components that comigrated with Sm14 in SDS-PAGE, and that were recognized by anti-rSm14 policlonal serum, in Western blotting tests.
Resumo:
During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.
Resumo:
In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.
Resumo:
DBP (albumin D-site-binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor) are the three members of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. All three of these transcriptional regulatory proteins accumulate with robust circadian rhythms in tissues with high amplitudes of clock gene expression, such as the suprachiasmatic nucleus (SCN) and the liver. However, they are expressed at nearly invariable levels in most brain regions, in which clock gene expression only cycles with low amplitude. Here we show that mice deficient for all three PAR bZip proteins are highly susceptible to generalized spontaneous and audiogenic epilepsies that frequently are lethal. Transcriptome profiling revealed pyridoxal kinase (Pdxk) as a target gene of PAR bZip proteins in both liver and brain. Pyridoxal kinase converts vitamin B6 derivatives into pyridoxal phosphate (PLP), the coenzyme of many enzymes involved in amino acid and neurotransmitter metabolism. PAR bZip-deficient mice show decreased brain levels of PLP, serotonin, and dopamine, and such changes have previously been reported to cause epilepsies in other systems. Hence, the expression of some clock-controlled genes, such as Pdxk, may have to remain within narrow limits in the brain. This could explain why the circadian oscillator has evolved to generate only low-amplitude cycles in most brain regions.
Resumo:
Myelination requires a massive increase in glial cell membrane synthesis. Here, we demonstrate that the acute phase of myelin lipid synthesis is regulated by sterol regulatory element-binding protein (SREBP) cleavage activation protein (SCAP), an activator of SREBPs. Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression involving cholesterol and fatty acid synthesis. Schwann cell SCAP mutant mice show congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins partially rescued myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP-mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane, and provide insight into abnormal Schwann cell function under conditions affecting lipid metabolism.
Resumo:
Abstract Introduction The primary function of the contractile vascular smooth muscle cells (cVSMCs) is the regulation of the vascular contractility which means the adaptation of the vascular tonus in response to the modulation of the blood pressure and blood flow. The cVSMCs are essentially quiescent, and therefore their synthesis rate is very limited. They are characterized by the expression of contractile proteins specific to the muscular tissue including myosin, h-‐caldesmon and <-‐smooth muscle actin (〈-‐SMA). These contractile cells are strongly represented in the media layer of the arterial wall and, in a smaller proportion, of the vein wall. Their typical stretched-‐out morphology allows recognizing them by a histological analysis. They do not produce any extracellular matrix (ECM), and do not migrate through the different layers of the vessel wall, and are not directly involved in the development of intimal hyperplasia (IH). Neointimal formation occurs after endothelial disruption leading to complex molecular and biological mechanisms. The de-‐differentiation of cVSMCs into synthetic VSMCs (sVSMCs) is mentioned as a key element. These non mature cells are able to proliferate and produce ECM. The characterization of the vascular smooth muscle cells (VSMCs) from healthy and stenosed vascular tissues will contribue to the understanding of the different biological processes leading to IH and will be useful for the development of new therapies to interfere with the cVSMCs growth and migration. The aim of our research was to quantify the proportion of cVSMCs and sVSMCs into the healthy and pathologic human blood vessel wall and to characterize their phenotype. Methods We selected 23 specimens of arterial and venous segments from 18 patients. All these specimens were stored in the biobank from the thoracic and vascular surgery departement. 4 groups were designed (group 1 :arteries without lesions (n=3) ;group 2 : veins without lesions (n=1); group 3: arteries with stenosis (n=9); group 4: veins with stenosis (n=10)). Histology: 5µm-‐sections were made from each sample embedded in paraffin wax and further stained with hematoxylin & eosin (HE), Van Gieson's stain (VGEL) and Masson's Trichrome (TMB). Pathologic tissues were defined using the label that was given to the macroscopic samples by the surgeon and also, based on the histological analysis with HE and VGEL evaluating the presence of a thickened intima. The same was done to the control samples evaluating the absence of thickening. Immunohistochemistry : The primary antibodies were used :〈-‐SMA, vimentin, h-‐ caldesmon, calponin, smooth muscle-myosin heavy chain (SM-‐MHC), tropomyosin-‐4, retinol binding protein-‐1 (RBP-‐1), nonmuscle-‐myosin heavy chain-‐B (NM-‐MHC-‐B), Von Willebrand factor (VWF). A semi-‐quantitative assessment of the intensity of each sample stained was performed. Western Blot : Segments of arteries and veins were analyzed using the following primary antibodies :〈-‐SMA, Calponin, SM-‐MHC, NM-‐MHC-‐B. The given results were then normalized with tubulin. Results Our data showed that, when using immunohistochemistry analysis we found that〈-‐SMA was mostly expressed in control arteries, whereas NM-‐MHC-‐B in the pathologic ones. Using SM-‐MHC, calponin, vimentin and caldesmon we found no significative differences in the expression of these proteins in the control and in the pathologic samples. Western Blot analysis showed an inverse correlation between healthy and pathological samples as <-‐ SMA was more expressed in the pathological samples, while NM-‐MHC-‐B in the control group; SM-‐MHC and calponin were mostly expressed in the pathologic samples. Conclusion Our study showed no clear differences between stenotic and control arterial and venous segments using semi-‐quantitative assessement by immunohistochemistry. Western Blot showed a significant increased expression of 〈-‐SMA, calponin and SM-‐MHC in the arteries with stenosis, while NM-‐MHC-‐B was mostly expressed in the arteries without lesions. Further studies are needed to track the lineage of VSMCs to understand the mechanisms leading toIH.
Resumo:
The MRSA-Screen test (Denka Seiken Co., Ltd., Tokyo, Japan), consisting of a slide latex agglutination kit that detects PBP 2a with a monoclonal antibody, was blindly compared to the oxacillin disk diffusion test, the oxacillin-salt agar screen, and PCR of the mecA gene for the detection of methicillin resistance in Staphylococcus aureus. A total of 120 methicillin-susceptible S. aureus (MSSA) and 80 methicillin-resistant S. aureus (MRSA) isolates, defined by the absence or presence of the mecA gene, respectively, were tested. The MRSA-Screen test, the oxacillin disk diffusion test, and the oxacillin-salt agar screening test showed sensitivities of 100, 61.3, and 82.5% and specificities of 99.2, 96.7, and 98.3%, respectively. We conclude that the MRSA-Screen is a very accurate, reliable, and fast test (15 min) for differentiation of MRSA from MSSA colonies on agar plates.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
In this issue of Blood, Iqbal et al, having compiled gene expression profiles from >300 peripheral T-cell lymphomas, expand previous findings on the diagnostic value of molecular signatures that correlate with different histological types of T-cell lymphomas. They report the discovery of 2 molecular subgroups of peripheral T-cell lymphomas, not otherwise specified (PTCL, NOS), characterized by high expression of either GATA-binding protein 3 (GATA-3) or t-box 21 (TBX21) transcription factors and corresponding target genes, with the GATA3 subgroup being associated with distinctly worse prognosis. In an independent study, Wang et al(2) also show that GATA3 expression in a subset of PTCL, NOS identifies a subgroup of patients with inferior survival.
Resumo:
The misuse of human growth hormone (hGH) in sport is deemed to be unethical and dangerous because of various adverse effects. Thus, it has been added to the International Olympic Committee list of banned substances. Until now, the very low concentration of hGH in the urine made its measurement difficult using classical methodology. Indeed, for routine diagnosis, only plasma measurements were available. However, unlike blood samples, urine is generally provided in abundant quantities and is, at present, the only body fluid allowed to be analysed in sport doping controls. A recently developed enzyme-linked immunosorbent assay (Norditest) makes it now possible, without any extraction, to measure urinary hGH (u-hGH) in a dynamic range of 2-50 ng hGH/l. In our protocol, untreated and treated non-athlete volunteers were followed. Some of them received therapeutical doses of recombinant hGH (Norditropin) for one week either intramuscularly (three increasing doses) or subcutaneously (12 i.u. every day). The u-hGH excretion after treatment showed dramatic increases of 50-100 times the basal values and returned to almost the mean normal level after 24 h. u-hGH was also measured in samples provided by the anti-doping controls at major and minor competitions. Depending on the type of efforts made during the competition, the hGH concentration in urine was dramatically increased. Insulin-like growth factor binding proteins and beta 2-microglobulins in urine and/or in blood could be necessary for the correct investigation of any hGH doping test procedure.
Resumo:
Immunoreactivity to calbindin D-28k, a vitamin D-dependent calcium-binding protein, is expressed by neuronal subpopulations of dorsal root ganglia (DRG) in the chick embryo. To determine whether the expression of this phenotypic characteristic is maintained in vitro and controlled by environmental factors, dissociated DRG cell cultures were performed under various conditions. Subpopulations of DRG cells cultured at embryonic day 10 displayed calbindin-immunoreactive cell bodies and neurites in both neuron-enriched or mixed DRG cell cultures. The number of calbindin-immunoreactive ganglion cells increased up to 7-10 days of culture independently of the changes occurring in the whole neuronal population. The presence of non-neuronal cells, which promotes the maturation of the sensory neurons, tended to reduce the percentage of calbindin-immunoreactive cell bodies. Addition of horse serum enhanced both the number of calbindin-positive neurons and the intensity of the immunostaining, but does not prevent the decline of the subpopulation of calbindin-immunoreactive neurons during the second week of culture; on the contrary, the addition of muscular extract to cultures at 10 days maintained the number of calbindin-expressing neurons. While calbindin-immunoreactive cell bodies grown in culture were small- or medium-sized, no correlation was found between cell size and immunostaining density. At the ultrastructural level, the calbindin immunoreaction was distributed throughout the neuroplasm. These results indicate that the expression of calbindin by sensory neurons grown in vitro may be modulated by horse serum-contained factors or interaction with non-neuronal cells. As distinct from horse serum, muscular extract is able to maintain the expression of calbindin by a subpopulation of DRG cells.