993 resultados para pedagogía experimental
Resumo:
The cybernetic modeling framework for the growth of microorganisms provides for an elegant methodology to account for the unknown regulatory phenomena through the use of cybernetic variables for enzyme induction and activity. In this paper, we revisit the assumption of limited resources for enzyme induction (Sigma u(i) = 1) used in the cybernetic modeling framework by presenting a methodology for inferring the individual cybernetic variables u(i) from experimental data. We use this methodology to infer u(i) during the simultaneous consumption of glycerol and lactose by Escherichia coli and then model the fitness trade-offs involved in the recently discovered predictive regulation strategy of microorganisms.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.
Resumo:
Experimental analyses of surface oscillations are reported in acoustically levitated, radiatively heated bicomponent droplets with one volatile and other being nonvolatile. Two instability pathways are observed: one being acoustically driven observed in low-vapor pressure fluid droplets and other being boiling driven observed in high-vapor pressure fluid droplets. The first pathway shows extreme droplets deformation and subsequent breakup by acoustic pressure and externally supplied heat. Also transition of instabilities from acoustically activated shape distortion regime to thermally induced boiling regime is observed with increasing concentration of volatile component in bicomponent droplets. Precursor phases of instabilities are investigated using Legendre's polynomial.
Resumo:
Measurement of device current during switching characterisation of an insulated gate bipolar transistor (IGBT) requires a current sensor with low insertion impedance and high bandwidth. This study presents an experimental procedure for evaluating the performance of a coaxial current transformer (CCT), designed for the above purpose. A prototype CCT, which can be mounted directly on a power terminal of a 1200 V/50 A half-bridge IGBT module, is characterised experimentally. The measured characteristics include insertion impedance, gain and phase of the CCT at different frequencies. The bounds of linearity within which the CCT can operate without saturation are determined theoretically, and are also verified experimentally. The experimental study on linearity of the CCT requires a high-amplitude current source. A proportional-resonant (PR) controller-based current-controlled half-bridge inverter is developed for this purpose. A systematic procedure for selection of PR controller parameters is also reported in this study. This set-up is helpful to determine the limit of linearity and also to measure the frequency response of the CCT at realistic amplitudes of current in the low-frequency range.
Resumo:
An experimental investigation of evaporation of a pentane meniscus from a heated capillary slot is presented. A novel aspect of this study is that both the wicking height and steady state evaporation mass flow rate are measured simultaneously. Based on a macroscopic force balance, the apparent contact angle of the evaporating meniscus is experimentally estimated from the wicking height and mass flow rate. This is compared with the results obtained using evaporating thin-film theory. The experimentally estimated contact angle is slightly larger than that obtained from the thin-film model but both show similar trends. Further, it is found that the reduction in the meniscus height is primarily due to an increase in the apparent contact angle. The liquid and vapor pressure drops in the capillary are insignificant relative to the capillary pressure. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The solubilities of two lipid derivatives, geranyl butyrate and 10-undecen-1-ol, in SCCO2 (supercritical carbon dioxide) were measured at different operating conditions of temperature (308.15 to 333.15 K) and pressure (10 to 18 MPa). The solubilities (in mole fraction) ranged from 2.1 x 10(-3) to 23.2 x 10(-3) for geranyl butyrate and 2.2 x 10(-3) to 25.0 x 10(-3) for 10-undecen-1-ol, respectively. The solubility data showed a retrograde behavior in the pressure and temperature range investigated. Various combinations of association and solution theory along with different activity coefficient models were developed. The experimental data for the solubilities of 21 liquid solutes along with geranyl butyrate and 10-undecen-1-ol were correlated using both the newly derived models and the existing models. The average deviation of the correlation of the new models was below 15%.
Resumo:
This paper investigates possible reduction of pulsating torque in open-loop and vector-controlled induction motor drives through deployment of certain advanced bus-clamping pulsewidth modulation (ABCPWM) method. Toward this goal, a simple and machine-independent method is proposed to analyze the torque harmonic spectrum of a voltage source inverter fed induction motor, operated with any real-time pulsewidth modulation (PWM) method. The analytically evaluated torque harmonic spectra, pertaining to conventional space vector PWM (CSVPWM), bus-clamping PWM (BCPWM), and ABCPWM, are validated through simulation and experimental results. Theoretical and experimental studies bring out the superiority of the ABCPWM in terms of torque harmonics over CSVPWM and BCPWM. The magnitude of the dominant torque harmonic with the ABCPWM scheme is shown to be significantly lower than that with CSVPWM, over a wide range of speed. The rms torque ripple (i.e., total rms value of all harmonic torques) is lower with ABCPWM than with BCPWM over the entire range of speed.
Resumo:
We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.
Resumo:
The Ultra Wide Band (UWB) system has been a subject of research in the last few years due to its utility in various high power electromagnetic applications. Due to its simplicity in design and fabrication, the Half Impulse Radiating Antenna (HIRA) based UWB system has attracted many researchers. Effectiveness of a UWB system, in terms of the bandwidth of the radiated pulse depends on the duration of the radiated field which is typically of sub nanosecond regime. This duration in turn depends on the closure time of the switch used in the UWB pulsed power source. This paper presents the work carried out on the pressurised gas switch of a 50 kV pulsed power system of a HIRA based UWB system. The aim of the present work is to establish the relationship between the pulser switch breakdown voltage and gas pressure, rise time and gas pressure as well as the dependency of the Pulse Repetition Rate (PRR) on the switch breakdown voltage.
Resumo:
Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of
Resumo:
Experimental hardware has been developed to perform experiments on the Marangoni migration of drops in the case of intermediate Reynolds numbers in a microgravity environment. The experiments were conducted using the drop shaft free fall facility with a 4.5 second microgravity period in the Microgravity Laboratory of Japan. In this experiment, the thermocapillary velocity of drop migration was measured for drops of different sizes in a series of temperature gradients.
Resumo:
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, "turbulent spots" appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed neat sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces.
Resumo:
对单向水流作用下近壁管道横向涡激振动进行了实验模拟,重点探讨了管道与壁面间隙比(e/D)对管道涡激振动幅值和涡激振动频率响应特性的影响规律.实验结果表明,管道与壁面间隙宽度对管道涡激振动特性有较明显影响.在较大间隙比(e/D>0.66)下,管道振幅随着Vr数的增大先快速增长到最大值,然后平缓下降;在振动初期(即Vr数较小时),管道振动频率变化基本符合Strouhal规律;在振动中后期(即Vr数较大时),管道振动频率变化不符合Strouhal规律,而在管道固有频率附近缓慢增长.在较小间隙比(e/D<0.30)下,管道振幅随Vr数的增大先平缓上升到最大值,随后较快速下降;在振动初期,管道振动频率变化不遵循Strouhal规律;在整个振动范围内,与较大间隙比情况相比,随着Vr数增加,管道振动频率增长幅度明显较大.
Resumo:
There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. 0 2002 Biomedical Engineering Society.
Resumo:
The paper presents an experimental study on critical sensitivity in rocks. Critical sensitivity means that the response of a system to external controlling variable may become significantly sensitive as the system approaches its catastrophic rupture point. It is found that the sensitivities measured by responses on three scales (sample scale, locally macroscopic scales and mesoscopic scale) display increase prior to catastrophic transition point. These experimental results do support the concept that critical sensitivity might be a common precursory feature of catastrophe. Furthermore, our previous theoretical model is extended to explore the fluctuations in critical sensitivity in the rock tests.