979 resultados para pathogens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocarditis pathogens colonize valves with pre-existing sterile vegetations or valves with minimal endothelial lesions. Inflamed endothelia produce cytokines, integrins, and tissue factor, which in turn attract fibronectin, monocytes, and platelets. Bacteria attaching to such structures further activate the cascade, becoming embedded and protected from host defenses. Staphylococcus aureus also actively invade the endothelium, causing apoptosis and endothelial damage. Knowledge of this interplay identifies host factors as potential therapeutic targets. Blocking infection by modulating host factors might be opportune because host factors are conserved. In contrast, interfering with bacterial virulence factors might be more complicated because they vary among different bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Originally, the Chlamydiales order was represented by a single family, the Chlamydiaceae, composed of several pathogens, such as Chlamydia trachomatis, Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia abortus. Recently, 6 new families of Chlamydia-related bacteria have been added to the Chlamydiales order. Most of these obligate intracellular bacteria are able to replicate in free-living amoebae. Amoebal co-culture may be used to selectively isolate amoeba-resisting bacteria. This method allowed in a previous work to discover strain CRIB 30, from an environmental water sample. Based on its 16S rRNA gene sequence similarity with Criblamydia sequanensis, strain CRIB 30 was considered as a new member of the Criblamydiaceae family. In the present work, phylogenetic analyses of the genes gyrA, gyrB, rpoA, rpoB, secY, topA and 23S rRNA as well as MALDI-TOF MS confirmed the taxonomic classification of strain CRIB 30. Morphological examination revealed peculiar star-shaped elementary bodies (EBs) similar to those of C. sequanensis. Therefore, this new strain was called "Estrella lausannensis". Finally, E. lausannensis showed a large amoebal host range and a very efficient replication rate in Acanthamoeba species. Furthermore, E. lausannensis is the first member of the Chlamydiales order to grow successfully in the genetically tractable Dictyostelium discoideum, which opens new perspectives in the study of chlamydial biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococci of the viridans group have long been considered to be minor pathogens, except in bacterial endocarditis. For some years, however, these microorganisms have been the cause of serious bacteraemia in neutropenic patients receiving intensive chemotherapy. These infections can lead to severe complications such as endocarditis, respiratory distress syndromes or shock, and are associated with a mortality rate ranging from 6-30%. The principal risk factors for these infections are profound neutropenia, antibiotic prophylaxis with quinolones or cotrimoxazole, large doses of cytosine arabinoside, a recent history of chemotherapy, oropharyngeal mucositis and viridans streptococcal colonization. Protective factors are the early administration of parenteral antibiotics during periods of neutropenia, or the prophylactic administration of penicillin. Although the introduction of penicillin to prophylactic antibiotic regimens has led to a decrease in the incidence of these infections, the emergence of strains resistant to beta-lactams is a worrying problem which could compromise this type of treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional methods are sometimes insufficient to identify human bacterial pathogens, and alternative techniques, often molecular, are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified with a valid score 45.9% of 410 clinical isolates from 207 different difficult-to-identify species having required 16S rRNA gene sequencing. MALDI-TOF MS might represent an alternative to 16S rRNA gene sequencing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbiological diagnosis of periprosthetic joint infection (PJI) is crucial for successful antimicrobial treatment. Cultures have limited sensitivity, especially in patients receiving antibiotics. We evaluated the value of multiplex PCR for detection of microbial DNA in sonication fluid from removed orthopedic prostheses. Cases of PJI in which the prosthesis (or part of it) was removed were prospectively included. The removed implant was sonicated, and the resulting sonication fluid was cultured and subjected to multiplex PCR. Of 37 PJI cases (17 hip prostheses, 14 knee prostheses, 4 shoulder prostheses, 1 elbow prosthesis, and 1 ankle prosthesis), pathogens were identified in periprosthetic tissue in 24 (65%) cases, in sonication fluid in 23 (62%) cases, and by multiplex PCR in 29 (78%) cases. The pathogen was detected in 5 cases in sonication fluid only (Propionibacterium acnes in all cases; none of these patients had previously received antibiotics) and in 11 cases by multiplex PCR only (all of these patients had previously received antibiotics). After exclusion of 8 cases caused by P. acnes or Corynebacterium species, which cannot be detected due to the absence of specific primers in the PCR kit, sonication cultures were positive in 17 cases and multiplex PCR sonication cultures were positive in 29 cases (59% versus 100%, respectively; P < 0.01). Among 19 cases (51%) receiving antibiotics, multiplex PCR was positive in all 19 (100%), whereas sonication cultures grew the organism in 8 (42%) (P < 0.01). Multiplex PCR of sonication fluid is a promising test for diagnosis of PJI, particularly in patients who previously received antibiotics. With modified primer sets, multiplex PCR has the potential for further improvement of the diagnosis of PJI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of immunity against infection can be framed in the context of genomics. First, long-term association with pathogens results in genomic signatures that result from positive selection. Evolutionary pressures tailor species or individual responses to pathogens, that may be associated with skewed patterns of immunity. Second, recent human population expansion carries an increasing burden of genetic mutation that can result in sporadic immunodeficiencies, and more generally, in diversity in susceptibility to infection. This review highlights current concepts and tools for the analysis of genomes and stresses the interest of these approaches in immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite improvements in health care, the incidence of infective endocarditis has not decreased over the past decades. This apparent paradox is explained by a progressive evolution in risk factors; while classic predisposing conditions such as rheumatic heart disease have been all but eradicated, new risk factors for infective endocarditis have emerged. These include intravenous drug use, sclerotic valve disease in elderly patients, use of prosthetic valves, and nosocomial disease. Newly identified pathogens, which are difficult to cultivate--eg, Bartonella spp and Tropheryma whipplei--are present in selected individuals, and resistant organisms are challenging conventional antimicrobial therapy. Keeping up with these changes depends on a comprehensive approach, allying understanding of the pathogenesis of disease with the development of new drugs for infective endocarditis. Infection by staphylococci and streptococci is being dissected at the molecular level. New ideas for antimicrobial agents are being developed. These novel insights should help redefine preventive and therapeutic strategies against infective endocarditis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

R. solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world"s most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Cunnac et al., 2004b; Mukaihara et al., 2010; Occhialini et al., 2005; Salanoubat et al., 2002). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1994), which injects a number of effector proteins into plant cells causing disease in hosts or an hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a crucial transition time for human genetics in general, and for HIV host genetics in particular. After years of equivocal results from candidate gene analyses, several genome-wide association studies have been published that looked at plasma viral load or disease progression. Results from other studies that used various large-scale approaches (siRNA screens, transcriptome or proteome analysis, comparative genomics) have also shed new light on retroviral pathogenesis. However, most of the inter-individual variability in response to HIV-1 infection remains to be explained: genome resequencing and systems biology approaches are now required to progress toward a better understanding of the complex interactions between HIV-1 and its human host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virulent infections are expected to impair learning ability, either as a direct consequence of stressed physiological state or as an adaptive response that minimizes diversion of energy from immune defense. This prediction has been well supported for mammals and bees. Here, we report an opposite result in Drosophila melanogaster. Using an odor-mechanical shock conditioning paradigm, we found that intestinal infection with bacterial pathogens Pseudomonas entomophila or Erwinia c. carotovora improved flies' learning performance after a 1h retention interval. Infection with P. entomophila (but not E. c. carotovora) also improved learning performance after 5 min retention. No effect on learning performance was detected for intestinal infections with an avirulent GacA mutant of P. entomophila or for virulent systemic (hemocoel) infection with E. c. carotovora. Assays of unconditioned responses to odorants and shock do not support a major role for changes in general responsiveness to stimuli in explaining the changes in learning performance, although differences in their specific salience for learning cannot be excluded. Our results demonstrate that the effects of pathogens on learning performance in insects are less predictable than suggested by previous studies, and support the notion that immune stress can sometimes boost cognitive abilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While learning to avoid toxic food is common in mammals and occurs in some insects, learning to avoid cues associated with infectious pathogens has received little attention. We demonstrate that Drosophila melanogaster show olfactory learning in response to infection with their virulent intestinal pathogen Pseudomonas entomophila. This pathogen was not aversive to taste when added to food. Nonetheless, flies exposed for 3 h to food laced with P. entomophila, and scented with an odorant, became subsequently less likely to choose this odorant than flies exposed to pathogen-laced food scented with another odorant. No such effect occurred after an otherwise identical treatment with an avirulent mutant of P. entomophila, indicating that the response is mediated by pathogen virulence. These results demonstrate that a virulent pathogen infection can act as an aversive unconditioned stimulus which flies can associate with food odours, and thus become less attracted to pathogen-contaminated food.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tuttle Lake Watershed is approximately 125,000 acres and Tuttle Lake itself is 2,270 acres; 5,609 acres of the watershed lies in Iowa territory within Emmet County. It is a sub-watershed of the larger East Fork Des Moines River Watershed, also referred to as Hydrologic Unit Code 07100003. For the purpose of this document, grant money is only being applied for the project implementation in the Iowa portion of the Tuttle Lake Watershed. Tuttle Lake was placed on the 2002 EPA 303(d) Impaired Waters List due to a “very large population of suspended algae and very high levels of inorganic turbidity.” In 2004, the Iowa Department of Natural Resources (IDNR) completed a Total Maximum Daily Load (TMDL) study on Tuttle Lake and found excess sediment and phosphorus levels being the primary pollutants causing the algae and turbidity impairment. Although two point sources were located in Minnesota, IDNR determined that the influx of nutrients is likely from agricultural runoff and re-suspension of lake sediment. The condition of Tuttle Lake is such that the reduction of sediment, nutrients [phosphorus and nitrogen] and pathogens is the primary objective. To achieve that objective, wetlands will be constructed in this first phase to reduce the delivery of nitrogen, phosphorus, and sediment to Tuttle Lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield.