984 resultados para origin of photoluminescence
Resumo:
Coulomb suppression of shot noise in a ballistic diode connected to degenerate ideal contacts is analyzed in terms of the correlations taking place between current fluctuations due to carriers injected with different energies. By using Monte Carlo simulations we show that at low frequencies the origin of Coulomb suppression can be traced back to the negative correlations existing between electrons injected with an energy close to that of the potential barrier present in the diode active region and all other carriers injected with higher energies. Correlations between electrons with energy above the potential barrier with the rest of electrons are found to influence significantly the spectra at high frequency in the cutoff region.
Resumo:
BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.
Resumo:
Understanding the role of gene duplications in establishing vertebrate innovations is one of the main challenges of Evo-Devo (evolution of development) studies. Data on evolutionary changes in gene expression (i.e., evolution of transcription factor-cis-regulatory elements relationships) tell only part of the story; protein function, best studied by biochemical and functional assays, can also change. In this study, we have investigated how gene duplication has affected both the expression and the ligand-binding specificity of retinoic acid receptors (RARs), which play a major role in chordate embryonic development. Mammals have three paralogous RAR genes--RAR alpha, beta, and gamma--which resulted from genome duplications at the origin of vertebrates. By using pharmacological ligands selective for specific paralogues, we have studied the ligand-binding capacities of RARs from diverse chordates species. We have found that RAR beta-like binding selectivity is a synapomorphy of all chordate RARs, including a reconstructed synthetic RAR representing the receptor present in the ancestor of chordates. Moreover, comparison of expression patterns of the cephalochordate amphioxus and the vertebrates suggests that, of all the RARs, RAR beta expression has remained most similar to that of the ancestral RAR. On the basis of these results together, we suggest that while RAR beta kept the ancestral RAR role, RAR alpha and RAR gamma diverged both in ligand-binding capacity and in expression patterns. We thus suggest that neofunctionalization occurred at both the expression and the functional levels to shape RAR roles during development in vertebrates.
Resumo:
Introduction.- Pain and beliefs have an influence on the patient's course in rehabilitation and their relationships are complex. The aim of this study was to understand the relationships between pain at admission and the evolution of beliefs during rehabilitation as well as the relationships between pain and beliefs one year after rehabilitation.Patients and methods.- Six hundred and thirty-one consecutive patients admitted in rehabilitation after musculoskeletal trauma, were included and assessed at admission, at discharge and one year after discharge. Pain was measured by VAS (Visual Analogical Scale) and beliefs by judgement on Lickert scales. Four kinds of beliefs were evaluated: fear of a severe origin of pain, fear of movement, fear of pain and feeling of distress (loss of control). The association between pain and beliefs was assessed by logistic regressions, adjusted for gender, age, native language, education and bio-psycho-social complexity.Results.- At discharge, 44% of patients felt less distressed by pain, 34% are reinsured with regard to their fear of a severe origin of pain, 38% have less fear of pain and 33% have less fear of movement. The higher the pain at admission, the higher the probability that the distress diminished, this being true up to a threshold (70 mm/100) beyond which there was a plateau. At one year, the higher the pain, the more dysfunctional the fears.Discussion.- The relationships between pain and beliefs are complex and may change all along rehabilitation. During hospitalization, one could hope that the patient would be reinsured and would gain self-control again, if pain does not exceed a certain threshold. After one year, high pain increases the risk of dysfunctional beliefs. For clinical practice, these data suggest to think in terms of the more accessible "entrance door", act against pain and/or against beliefs, adpated to each patient.
Resumo:
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal life. These proteins are involved in organogenesis during embryonic development as well as in the maintenance of homeostasis of self-renewing systems. The paradigms of Notch function, such as stem and progenitor cell maintenance, lineage specification mediated by binary cell fate decisions, and induction of terminal differentiation, were initially established in invertebrates and subsequently confirmed in mammals. Moreover, aberrant Notch signaling is linked to tumorigenesis. In this review, we discuss the origin of postulated Notch functions, give examples from different mammalian organ systems, and try to relate them to the hematopoietic system.
Resumo:
The aim of this article is to show how a contemporary playwright thinks once more of the Platonic image of the cave in order to reflect on the necessary existential journey of men and women as in the case of a Bildungsroman. Sooner or later men and women must abandon the protection that any sort of cavern such as home, the family garden or family itself can offer. In spite of writing from a by no means idealistic or metaphysical point of view, thanks to R. Sirera and to the very applicability of Platonic images, Plato becomes once again a classical reference which is both useful and even unavoidable if one bears in mind the Platonic origin of all the literary caverns.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are an ecologically important group of fungi. Previous studies showed the presence of divergent copies of beta-tubulin and V-type vacuolar H+-ATPase genes in AMF genomes and suggested horizontal gene transfer from host plants or mycoparasites to AMF. We sequenced these genes from DNA isolated from an in vitro cultured isolate of Glomus intraradices that was free of any obvious contaminants. We found two highly variable beta-tubulin sequences and variable H+-ATPase sequences. Despite this high variation, comparison of the sequences with those in gene banks supported a glomeromycotan origin of G. intraradices beta-tubulin and H+-ATPase sequences. Thus, our results are in sharp contrast with the previously reported polyphyletic origin of those genes. We present evidence that some highly divergent sequences of beta-tubulin and H+-ATPase deposited in the databases are likely to be contaminants. We therefore reject the prediction of horizontal transfer to AMF genomes. High differences in GC content between glomeromycotan sequences and sequences grouping in other lineages are shown and we suggest they can be used as an indicator to detect such contaminants. H+-ATPase phylogeny gave unexpected results and failed to resolve fungi as a natural group. beta-Tubulin phylogeny supported Glomeromeromycota as sister group of the Chytridiomycota. Contrasts between our results and trees previously generated using rDNA sequences are discussed.
Resumo:
The aim of this article is to show how, throughout M. A. Riera's poetry, an evident anti-metaphysical sensibility can be easily detected, which in its turn makes the poet to praise concrete person's skin, flesh and bodies, thus avoiding any personal Platonic or idealistic experience of human love. In the author's opinion, an accurate reading of his poems makes us discover Plato and Platonism as one of the great responsible thinkers for the contempt of carnal love, which has been undoubtedly the origin of a real human pain as a result of denying the somatic side of eros.
Resumo:
The variety of soils in the State of Acre is wide and their chemical profiles are still not fully understood. The nature of the material of origin of these soils is indicated by the high aluminium (Al) content, commonly associated with high calcium (Ca) and magnesium (Mg) contents. The study objective was to use different methods to quantify Al in soils from toposequences formed from material of a sedimentary nature originating from the Solimões Formation, in Acre, Brazil. Trenches were opened at three distinct points in the landscape: shoulder, backslope and footslope positions. Soil samples were collected for physical, chemical, mineralogical analyses. The Al content was quantified using different methods. High Al contents were found in most of these horizons, associated with high Ca and Mg levels, representing the predominant cations in the sum of exchangeable bases. The mineralogy indicates that the soils are still in a low weathering phase, with the presence of significant quantities of 2:1 minerals. Similar Al contents were determined by the methods of NaOH titration, xylenol orange spectrometry and inductively coupled plasma optical emission spectrometry. However, no consistent data were obtained by the pyrocatechol violet method. Extraction with KCl overestimated the exchangeable Al content due to its ability to extract the non-exchangeable Al present in the smectite interlayers. It was observed that high Al contents are related to the instability of the hydroxyl-Al smectite interlayers.
Resumo:
Calcium phosphate coatings, obtained at different deposition rates by pulsed laser deposition with a Nd:YAG laser beam of 355-nm wavelength, were studied. The deposition rate was changed from 0.043 to 1.16 /shot by modification of only the ablated area, maintaining the local fluence constant to perform the ablation process in similar local conditions. Characterization of the coatings was performed by scanning electron microscopy, x-ray diffractometry, and infrared, micro-Raman, and x-ray photoelectron spectroscopy. The coatings showed a compact surface morphology formed by glassy gains with some droplets on them. Only hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) peaks were found in the x-ray diffractograms. The relative content of alpha TCP diminished with decreasing deposition rates, and only HA peaks were found for the lowest rate. The origin of alpha TCP is discussed.
Resumo:
Expression of colony social organization in fire ants appears to be under the control of a single Mendelian factor of large effect. Variation in colony queen number in Solenopsis invicta and its relatives is associated with allelic variation at the gene Gp-9, but not with variation at other unlinked genes; workers regulate queen identity and number on the basis of Gp-9 genotypic compatibility. Nongeneticfactors, such as prior social experience, queen reproductive status, and local environment, have negligible effects on queen number which illustrates the nearly complete penetrance of Gp-9. As predicted, queen number can be manipulated experimentally by altering worker Gp-9 genotype frequencies. The Gp-9 allele lineage associated with polygyny in South American fire? ants has been retained across multiple speciation events, which may signal the action of balancing selection to maintain social polymorphism in these species. Moreover positive selection is implicated in driving the molecular evolution of Gp-9 in association with the origin of polygyny. The identity of the product of Gp-9 as an odorant-binding protein suggests plausible scenarios for its direct involvement in the regulation of queen number via a role in chemical communication. While these and other lines of evidence show that Gp-9 represents a legitimate candidate gene of major effect, studies aimed at determining (i) the biochemical pathways in which GP-9 functions; (ii) the phenotypic effects of molecular variation at Gp-9 and other pathway genes; and (iii) the potential involvement of genes in linkage disequilibrium with Gp-9 are needed to elucidate the genetic architecture underlying social organization in fire ants. Information that reveals the links between molecular variation, individual phenotype, and colony-level behaviors, combined with behavioral models that incorporate details of the chemical communication involved in regulating queen number will yield a novel integrated view of the evolutionary changes underlying a key social adaptation.
Resumo:
RésuméLes champignons sont impliqués dans les cycles biogéochimiques de différentes manières. En particulier, ils sont reconnus en tant qu'acteurs clés dans la dégradation de la matière organique, comme fournisseurs d'éléments nutritifs via l'altération des minéraux mais aussi comme grands producteurs d'acide oxalique et de complexes oxalo-métalliques. Toutefois, peu de choses sont connues quant à leur contribution à la genèse d'autres types de minéraux, tel que le carbonate de calcium (CaCO3). Le CaCO3 est un minéral ubiquiste dans de nombreux écosystèmes et il joue un rôle essentiel dans les cycles biogéochimiques du carbone (C) et du calcium (Ca). Le CaCO3 peut être d'origine physico-chimique ou biogénique et de nombreux organismes sont connus pour contrôler ou induire sa biominéralisation. Les champignons ont souvent été soupçonnés d'être impliqué dans ce processus, cependant il existe très peu d'informations pour étayer cette hypothèse.Cette thèse a eu pour but l'étude de cet aspect négligé de l'impact des champignons dans les cycles biogéochimiques, par l'exploration de leur implication potentielle dans la formation d'un type particulier de CaCO3 secondaires observés dans les sols et dans les grottes des environnements calcaires. Dans les grottes, ces dépôts sont appelés moonmilk, alors que dans les sols on les appelle calcite en aiguilles. Cependant ces deux descriptions correspondent en fait au même assemblage microscopique de deux habitus particulier de la calcite: la calcite en aiguilles (au sens strict du terme cette fois-ci) et les nanofibres. Ces deux éléments sont des habitus aciculaires de la calcite, mais présentent des dimensions différentes. Leur origine, physico-chimique ou biologique, est l'objet de débats intenses depuis plusieurs années déjà.L'observation d'échantillons environnementaux avec des techniques de microscopie (microscopie électronique et micromorphologie), ainsi que de la microanalyse EDX, ont démontré plusieurs relations intéressantes entre la calcite en aiguilles, les nanofibres et des éléments organiques. Premièrement, il est montré que les nanofibres peuvent être organiques ou minérales. Deuxièmement, la calcite en aiguilles et les nanofibres présentent de fortes analogies avec des structures hyphales, ce qui permet de confirmer l'hypothèse de leur origine fongique. En outre, des expériences en laboratoire ont confirmé l'origine fongique des nanofibres, par des digestions enzymatiques d'hyphes fongiques. En effet, des structures à base de nanofibres, similaires à celles observées dans des échantillons naturels, ont pu être produites par cette approche. Finalement, des enrichissements en calcium ont été mesurés dans les parois des hyphes et dans des inclusions intrahyphales provenant d'échantillons naturels de rhizomorphes. Ces résultats suggèrent une implication de la séquestration de calcium dans la formation de la calcite en aiguilles et/ou des nanofibres.Plusieurs aspects restent à élucider, en particulier la compréhension des processus physiologiques impliqués dans la nucléation de calcite dans les hyphes fongiques. Cependant, les résultats obtenus dans cette thèse ont permis de confirmer l'implication des champignons dans la formation de la calcite en aiguilles et des nanofibres. Ces découvertes sont d'une grande importance dans les cycles biogéochimiques puisqu'ils apportent de nouveaux éléments dans le cycle couplé C-Ca. Classiquement, les champignons sont considérés comme étant impliqués principalement dans la minéralisation de la matière organique et dans l'altération minérale. Cette étude démontre que les champignons doivent aussi être pris en compte en tant qu'agents majeurs de la genèse de minéraux, en particulier de CaCO3. Ceci représente une toute nouvelle perspective en géomycologie quant à la participation des champignons au cycle biologique du C. En effet, la présence de ces précipitations de CaCO3 secondaires représente un court-circuit dans le cycle biologique du C puisque du C inorganique du sol se retrouve piégé dans de la calcite plutôt que d'être retourné dans l'atmosphère.AbstractFungi are known to be involved in biogeochemical cycles in numerous ways. In particular, they are recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of oxalic acid and metal-oxalate. However, little is known about their contribution to the genesis of other types of minerals such as calcium carbonate (CaCO3). Yet, CaC03 are ubiquitous minerals in many ecosystems and play an essential role in the biogeochemical cycles of both carbon (C) and calcium (Ca). CaC03 may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce calcite biomineralization. While fungi have often been suspected to be involved in this process, only scarce information support this hypothesis.This Ph.D. thesis aims at investigating this disregarded aspect of fungal impact on biogeochemical cycles by exploring their possible implication in the formation of a particular type of secondary CaC03 deposit ubiquitously observed in soils and caves from calcareous environments. In caves, these deposits are known as moonmilk, whereas in soils, they are known as Needle Fibre Calcite (NFC - sensu lato). However, they both correspond to the same microscopic assemblage of two distinct and unusual habits of calcite: NFC {sensu stricto) and nanofibres. Both features are acicular habits of calcite displaying different dimensions. Whether these habits are physicochemical or biogenic in origin has been under discussion for a long time.Observations of natural samples using microscopic techniques (electron microscopy and micromorphology) and EDX microanalyses have demonstrated several interesting relationships between NFC, nanofibres, and organic features. First, it has shown that nanofibres can be either organic or minera! in nature. Second, both nanofibres and NFC display strong structural analogies with fungal hyphal features, supporting their fungal origin. Furthermore, laboratory experiments have confirmed the fungal origin of nanofibres through an enzymatic digestion of fungal hyphae. Indeed, structures made of nanofibres with similar features as those observed in natural samples have been produced. Finally, calcium enrichments have been measured in both cell walls and intrahyphal inclusions of hyphae from rhizomorphs sampled in the natural environment. These results point out an involvement of calcium sequestration in nanofibres and/or NFC genesis.Several aspects need further investigation, in particular the understanding of the physiological processes involved in hyphal calcite nucleation. However, the results obtained during this study have allowed the confirmation of the implication of fungi in the formation of both NFC and nanofibres. These findings are of great importance regarding global biogeochemical cycles as they bring new insights into the coupled C and Ca cycles. Conventionally, fungi are considered to be involved in organic matter mineralization and mineral weathering. In this study, we demonstrate that they must also be considered as major agents in mineral genesis, in particular CaC03. This is a completely new perspective in geomycology regarding the role of fungi in the short-term (or biological) C cycle. Indeed, the presence of these secondary CaC03 precipitations represents a bypass in the short- term carbon cycle, as soil inorganic C is not readily returned to the atmosphere.
Resumo:
Highly transparent and stoichiometric boron nitride (BN) films were deposited on both electrodes (anode and cathode) of a radio-frequency parallel-plate plasma reactor by the glow discharge decomposition of two gas mixtures: B2H6-H2-NH3 and B2H6-N2. The chemical, optical, and structural properties of the films, as well as their stability under long exposition to humid atmosphere, were analyzed by x-ray photoelectron, infrared, and Raman spectroscopies; scanning and transmission electron microscopies; and optical transmittance spectrophotometry. It was found that the BN films grown on the anode using the B2H6-H2-NH3 mixture were smooth, dense, adhered well to substrates, and had a textured hexagonal structure with the basal planes perpendicular to the film surface. These films were chemically stable to moisture, even after an exposition period of two years. In contrast, the films grown on the anode from the B2H6-N2 mixture showed tensile stress failure and were very unstable in the presence of moisture. However, the films grown on the cathode from B2H6-H2-NH3 gases suffered from compressive stress failure on exposure to air; whereas with B2H6-N2 gases, adherent and stable cathodic BN films were obtained with the same crystallographic texture as anodic films prepared from the B2H6-H2-NH3 mixture. These results are discussed in terms of the origin of film stress, the effects of ion bombardment on the growing films, and the surface chemical effects of hydrogen atoms present in the gas discharge.
Resumo:
A series of molecular dynamics simulations of simple liquid binary mixtures of soft spheres with disparate-mass particles were carried out to investigate the origin of the marked differences between the dynamic structure factors of some liquid binary mixtures such as the Li0.7Mg0.3 and Li0.8Pb0.2 alloys. It is shown that the facility for observing peaks associated with fast-propagating modes in the partial Li-Li dynamic structure factor of Li0.8Pb0.2 should be mainly attributed to the structure of this alloy, which is characterized by an incipient ABAB ordering as found in molten salts. The longitudinal dispersion relations at intermediate wave vectors obtained from the longitudinal current spectra are very similar for the two alloys and reflect the existence of both fast-and slow-propagating modes of kinetic character associated with light and heavy particles, respectively. The influence of the hardness of the repulsive potential cores as well as the composition of the mixture on the longitudinal collective modes is also discussed.
Resumo:
The in vitro adenovirus (Ad) DNA replication system provides an assay to study the interaction of viral and host replication proteins with the DNA template in the formation of the preinitiation complex. This initiation system requires in addition to the origin DNA sequences 1) Ad DNA polymerase (Pol), 2) Ad preterminal protein (pTP), the covalent acceptor for protein-primed DNA replication, and 3) nuclear factor I (NFI), a host cell protein identical to the CCAAT box-binding transcription factor. The interactions of these proteins were studied by coimmunoprecipitation and Ad origin DNA binding assays. The Ad Pol can bind to origin sequences only in the presence of another protein which can be either pTP or NFI. While NFI alone can bind to its origin recognition sequence, pTP does not specifically recognize DNA unless Ad Pol is present. Thus, protein-protein interactions are necessary for the targetting of either Ad Pol or pTP to the preinitiation complex. DNA footprinting demonstrated that the Ad DNA site recognized by the pTP.Pol complex was within the first 18 bases at the end of the template which constitutes the minimal origin of replication. Mutagenesis studies have defined the Ad Pol interaction site on NFI between amino acids 68-150, which overlaps the DNA binding and replication activation domain of this factor. A putative zinc finger on the Ad Pol has been mutated to a product that fails to bind the Ad origin sequences but still interacts with pTP. These results indicate that both protein-protein and protein-DNA interactions mediate specific recognition of the replication origin by Ad DNA polymerase.