944 resultados para nanostructured materials
Resumo:
This paper introduces VERTEX, a multi-disciplinary research program dealing with various aspects of particle transport in the upper, high-energy layers (0-2000 m) of the ocean. Background information is presented on hydrography, biological composition of trapped particulates, and major component fluxes observed on a cruise off central California (VERTEX I). Organic C fluxes measured with two trap systems are compared with several other estimates taken from the literature. The intent of this overview paper is to provide a common setting in an economical manner, and avoid undue repetition of background and ancillary information in subsequent publications. (PDF is 43 pages).
Resumo:
It is of utmost importance to understand the spallation behaviour of heterogeneous materials. In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high stress, causes lower damage.
Resumo:
Digital Speckle Correlation Method (DSCM) is a useful tool for whole field deformation measurement, and has been applied to analyze the deformation field of rock materials in recent years. In this paper, a Geo-DSCM system is designed and used to analyse the more complicated problems of rock mechanics, such as damage evolution and failure procedure. A weighted correlation equation is proposed to improve the accuracy of displacement measurement on a heterogeneous deformation field. In addition, a data acquisition system is described that can synchronize with the test machine and can capture speckle image at various speeds during experiment. For verification of the Geo-DSCM system, the failure procedure of a borehole rock structure is inspected and the evolution of the deformation localization is analysed. It is shown that the deformation localization generally initializes at the vulnerable area of the rock structure but may develop in a very complicated way.