982 resultados para muscle tissues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connexin43 (Cx43), the predominant gap junction protein of muscle cells in vessels and heart, is involved in the control of cell-to-cell communication and is thought to modulate the contractility of the vascular wall and the electrical coupling of cardiac myocytes. We have investigated the effects of arterial hypertension on the expression of Cx43 in aorta and heart in three different models of experimental hypertension. Rats were made hypertensive either by clipping one renal artery (two kidney, one-clip renal (2K,1C) model) by administration of deoxycorticosterone and salt (DOCA-salt model) or by inhibiting nitric oxide synthase with NG-nitro-L-arginine methyl ester (L-NAME model). After 4 weeks, rats of the three models showed a similar increase in intra-arterial mean blood pressure and in the thickness of the walls of both aorta and heart. Analysis of heart mRNA demonstrated no change in Cx43 expression in the three models compared to their respective controls. The same 2K,1C and DOCA-salt hypertensive animals expressed twice more Cx43 in aorta, and the 2K,1C rats showed an increase in arterial distensibility. In contrast, the aortae of L-NAME hypertensive rats were characterized by a 50% decrease in Cx43 and the carotid arteries did not show increased distensibility. Western blot analysis indicated that Cx43 was more phosphorylated in the aortae of 2K,1C rats than in those of L-NAME or control rats, indicating a differential regulation of aortic Cx43 in different models of hypertension. The data suggest that localized mechanical forces induced by hypertension affect Cx43 expression and that the cell-to-cell communication mediated by Cx43 channels may contribute to regulating the elasticity of the vascular wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which Ang II stimulates the growth of vascular smooth muscle cells was investigated by measuring the phosphorylation of mitogen-activated protein kinases ERK 1 and ERK 2. Ca2+ ionophore was found to have effects practically analogous to Ang II. We found that the signaling pathway involves the activation of epidermal growth factor receptor (EGFR) kinase, activation of the adaptor proteins Shc and Grb2, and the small G-protein Ras. Although the mechanism of AT1- (or Ca2+)-induced activation of EGFR is not yet clear, we have found that calcium-dependent protein kinase CAKß/PYK2 and c-Src are involved in this process. These studies indicate a transactivation mechanism that utilizes EGFR as a bridge between a Gq-coupled receptor and activation of phosphotyrosine generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormalities in glucose metabolism and insulin action are frequently detected in patients with essential hypertension. Spontaneously hypertensive rats (SHR) have been used as an experimental model to understand this pathological condition. The objective of the present study was to assess glucose metabolism and insulin action in SHR and Wistar rats under fed and fasting conditions. Peripheral glucose utilization was estimated by kinetic studies with [6-³H]-glucose and gluconeogenetic activity was measured during continuous [14C]-bicarbonate infusion. Plasma glucose levels were higher in the SHR group. Plasma insulin levels in the fed state were higher in the SHR group (99.8 ± 6.5 µM) than in the control group (70.4 ± 3.6 µM). Muscle glycogen content was reduced in SHR compared to control under the various experimental conditions. Peripheral glucose utilization was slightly lower in the SHR group in the fed state (8.72 ± 0.55 vs 9.52 ± 0.80 mg kg-1 min-1 in controls). Serum free fatty acid levels, hepatic glycogen levels, hepatic phosphoenolpyruvate carboxykinase activity and gluconeogenetic activity were similar in the two groups. The presence of hyperglycemia and hyperinsulinemia and the slightly reduced peripheral glucose utilization suggest the presence of resistance to the action of insulin in peripheral tissues of SHR. Hepatic gluconeogenesis does not seem to contribute to the metabolic alterations detected in these animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to investigate the effects of experimental diabetes on the oxidant and antioxidant status of latissimus dorsi (LD) muscles of male Wistar rats (220 ± 5 g, N = 11). Short-term (5 days) diabetes was induced by a single injection of streptozotocin (STZ, 50 mg/kg, iv; glycemia >300 mg/dl). LD muscle of STZ-diabetic rats presented higher levels of thiobarbituric acid reactive substances (TBARS) and chemiluminescence (0.36 ± 0.02 nmol/mg protein and 14706 ± 1581 cps/mg protein) than LD muscle of normal rats (0.23 ± 0.04 nmol/mg protein and 7389 ± 1355 cps/mg protein). Diabetes induced a 92% increase in catalase and a 27% increase in glutathione S-transferase activities in LD muscle. Glutathione peroxidase activity was reduced (58%) in STZ-diabetic rats and superoxide dismutase activity was similar in LD muscle of both groups. A positive correlation was obtained between catalase activity and the oxidative stress of LD, as evaluated in terms of TBARS (r = 0.78) and by chemiluminescence (r = 0.89). Catalase activity also correlated inversely with glutathione peroxidase activity (r = 0.79). These data suggest that an increased oxidative stress in LD muscle of diabetic rats may be related to skeletal muscle myopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2) in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days) induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05). There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 ± 4% (P<0.05) in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2) phosphorylation, to 83 ± 5% (P<0.05) in liver and to 77 ± 4% (P<0.05) in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the relationship between the sympathetic nerve activity and hemodynamic alterations in obesity, we simultaneously measured muscle sympathetic nerve activity (MSNA), blood pressure, and forearm blood flow (FBF) in obese and lean individuals. Fifteen normotensive obese women (BMI = 32.5 ± 0.5 kg/m²) and 11 age-matched normotensive lean women (BMI = 22.7 ± 1.0 kg/m²) were studied. MSNA was evaluated directly from the peroneal nerve by microneurography, FBF was measured by venous occlusion plethysmography, and blood pressure was measured noninvasively by an autonomic blood pressure cuff. MSNA was significantly increased in obese women when compared with lean control women. Forearm vascular resistance and blood pressure were significantly higher in obese women than in lean women. FBF was significantly lower in obese women. BMI was directly and significantly correlated with MSNA, blood pressure, and forearm vascular resistance levels, but inversely and significantly correlated with FBF levels. Obesity increases sympathetic nerve activity and muscle vascular resistance, and reduces muscle blood flow. These alterations, taken together, may explain the higher blood pressure levels in obese women when compared with lean age-matched women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation between dietary trans fatty acids and neoplasia was examined in the present study. Walker 256 tumor-bearing and control rats were fed a trans monounsaturated fatty acid (MUFA)-rich diet for 8 weeks and the incorporation of trans fatty acids by tumor tissue was examined. Also, the effect of tumor growth on trans fatty acid composition of plasma and liver, and the content of thiobarbituric acid-reactive substances (TBARS) was determined. Walker 256 tumor cells presented both trans and cis MUFAs given in the diet. The equivalent diet proportions were 0.66 for trans and 1.14 for cis. Taking into consideration the proportion of trans MUFAs in plasma (11.47%), the tumor incorporated these fatty acids in a more efficient manner (18.27%) than the liver (9.34%). Therefore, the dietary trans fatty acids present in the diet are actively incorporated by the tumor. Tumor growth itself caused marked changes in the proportion of polyunsaturated fatty acids in the plasma and liver but provoked only slight modifications in both trans and cis MUFAs. Tumor growth also reduced the unsaturation index in both plasma and liver, from 97.79 to 86.83 and from 77.51 to 69.64, respectively. This effect was partially related to an increase in the occurrence of the lipid oxidation/peroxidation process of TBARS content which was increased in both plasma (from 0.428 to 0.505) and liver (from 9.425 to 127.792) due to tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rats, the nitric oxide (NO)-synthase pathway is present in skeletal muscle, vascular smooth muscle, and motor nerve terminals. Effects of NO were previously studied in rat neuromuscular preparations receiving low (0.2 Hz) or high (200 Hz) frequencies of stimulation. The latter frequency has always induced tetanic fade. However, in these previous studies we did not determine whether NO facilitates or impairs the neuromuscular transmission in preparations indirectly stimulated at frequencies which facilitate neuromuscular transmission. Thus, the present study was carried out to examine the effects of NO in rat neuromuscular preparations indirectly stimulated at 5 and 50 Hz. The amplitude of muscular contraction observed at the end (B) of a 10-s stimulation was taken as the ratio (R) of that obtained at the start (A) (R = B/A). S-nitroso-N-acetylpenicillamine (200 µM), superoxide dismutase (78 U/ml) and L-arginine (4.7 mM), but not D-arginine (4.7-9.4 mM), produced an increase in R (facilitation of neurotransmission) at 5 Hz. However, reduction in the R value (fade of transmission) was observed at 50 Hz. N G-nitro-L-arginine (8.0 mM) antagonized both the facilitatory and inhibitory effects of L-arginine (4.7 mM). The results suggest that NO may modulate the release of acetylcholine by motor nerve terminals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extended the characterization of the DNA puff BhB10-1 gene of Bradysia hygida by showing that, although its mRNA is detected only at the end of the fourth larval instar, BhB10-1 expression is not restricted to the salivary gland, the tissue in which this gene is amplified. Different amounts of BhB10-1 mRNA were detected in other larval tissues such as gut, Malpighian tubules, fat body, brain and cuticle, suggesting that this gene is expressed differentially in the various tissues analyzed. Analysis of transgenic Drosophila carrying the BhB10-1 transcription unit and flanking sequences revealed that the tested fragment promotes transcription in a constitutive manner. We suggest that either cis-regulatory elements are missing in the transgene or factors that temporally regulate the BhB10-1 gene in B. hygida are not conserved in Drosophila.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to investigate the expression of alpha-smooth muscle actin (alpha-SM-actin) and proliferating cell nuclear antigen (PCNA) in renal cortex from patients with focal segmental glomerulosclerosis (FSGS) and their correlations with parameters of renal disease progression. We analyzed renal biopsies from 41 patients with idiopathic FSGS and from 14 control individuals. The alpha-SM-actin immunoreaction was evaluated using a score that reflected the changes in the extent and intensity of staining in the glomerular or cortical area. The PCNA reaction was quantified by counting the labeled cells of the glomeruli or renal cortex. The results, reported as median ± percentile (25th; 75th), showed that the alpha-SM-actin scores in the glomeruli and tubulointerstitium from the renal cortex were 2.0 (2.0; 4.0) and 3.0 (3.0; 4.0), respectively, in patients with FSGS, and 0.5 (0.0; 1.0) and 0.0 (0.0; 0.5) in the controls. The number of PCNA-positive cells per glomerulus and graded field of tubulointerstitium from the renal cortex was 0.2 (0.0; 0.4) and 1.1 (0.3; 2.2), respectively, for patients with FSGS, and 0.0 (0.0; 0.5) and 0.0 (0.0; 0.0) for controls. The present data showed an increase of alpha-SM-actin and PCNA expression in glomeruli and renal cortex from FSGS patients. The extent of immunoreaction for alpha-SM-actin in the tubulointerstitial area was correlated with the intensity of proteinuria. However, there was no correlation between the kidney expression of these proteins and the reciprocal of plasma creatinine level or renal fibrosis. These findings suggest that the immunohistochemical alterations may be reversible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUT4 protein expression in white adipose tissue (WAT) and skeletal muscle (SM) was investigated in 2-month-old, 12-month-old spontaneously obese or 12-month-old calorie-restricted lean Wistar rats, by considering different parameters of analysis, such as tissue and body weight, and total protein yield of the tissue. In WAT, a ~70% decrease was observed in plasma membrane and microsomal GLUT4 protein, expressed as µg protein or g tissue, in both 12-month-old obese and 12-month-old lean rats compared to 2-month-old rats. However, when plasma membrane and microsomal GLUT4 tissue contents were expressed as g body weight, they were the same. In SM, GLUT4 protein content, expressed as µg protein, was similar in 2-month-old and 12-month-old obese rats, whereas it was reduced in 12-month-old obese rats, when expressed as g tissue or g body weight, which may play an important role in insulin resistance. Weight loss did not change the SM GLUT4 content. These results show that altered insulin sensitivity is accompanied by modulation of GLUT4 protein expression. However, the true role of WAT and SM GLUT4 contents in whole-body or tissue insulin sensitivity should be determined considering not only GLUT4 protein expression, but also the strong morphostructural changes in these tissues, which require different types of data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoprotein lipase activity in adipose tissue and muscle is modulated by changes in the pattern of food intake. We have measured total lipoprotein lipase activity in adipose tissue and muscle of male Wistar rats (N = 6-10), weighing 200-250 g (~12 weeks), during the refeeding/fasting state following 24 h of fasting. Lipoprotein lipase activity in tissue homogenates was evaluated using a [³H]-triolein-containing substrate, and released [³H]-free fatty acids were extracted and quantified by liquid scintillation. Adipose tissue lipoprotein lipase activity did not completely recover within 2 h of refeeding (60% of refed ad libitum values). Cardiac lipoprotein lipase activity remained increased even 2 h after refeeding (100% of refed ad libitum values), whereas no significant changes were observed in the soleus and diaphragm muscles. Adipose tissue lipoprotein lipase activities were consistently higher than the highest skeletal muscle or heart values. It is therefore likely that adipose tissue, rather than muscle makes the major contribution to triacylglycerol clearance. There was concomitant relatively high lipoprotein lipase activity in both adipose tissue and cardiac muscle during the first few hours of refeeding, therefore cardiac muscle may contribute significantly to triacylglycerol clearance during this period. The results suggest that during fasting, increased lipoprotein lipase activity provides a complementary source of free fatty acids from circulating triacylglycerol, allowing the heart to maintain its continuous, high-energy expenditure.