1000 resultados para musée de site
Resumo:
Collection : Le siècle ; 1-46
Resumo:
Collection : Le siècle ; 1-46
Resumo:
Collection : Le siècle ; 1-46
Resumo:
Collection : Le siècle ; 1-46
Resumo:
Collection : Le siècle ; 1-46
Resumo:
Collection : Le siècle ; 1-46
Resumo:
Collection : Le siècle ; 1-46
Resumo:
[Exposition. Paris, Palais de l'industrie. 1865]
Resumo:
Dr. Deeks and Dr. Gibson admiring the Brock Unviersity sign at the Glenrdige Campus. Renovations to the old refigerator factory were only just underway at this time.
Resumo:
Dr. Deeks and Dr. Gibson touring the recently acquired Decew Campus site along a stretch of Merrittville Highway in early 1964. The Sanatorium can be seen in the background.
Resumo:
Dr. Deeks and Dr. Gibson examining the sign at the Decew Campus site along the stretch of Merrittville Highway just north of St. Davids Road. This photo was taken in March of 1964.
Resumo:
Members of Brock University's Founders Committee and the Ontario Advisory Committee on Univesity Affairs tour the Decew site along with Premier John Robarts on June 5, 1963. Premier Robarts had just announced provincial assistance totalling $393,000 for the Brock University project. Pictured here from left to right are Dr. Deeks, Brock University Vice President; Premier Robarts; and James Allan, Provincial Treasurer.
Resumo:
Euclidean distance matrix analysis (EDMA) methods are used to distinguish whether or not significant difference exists between conformational samples of antibody complementarity determining region (CDR) loops, isolated LI loop and LI in three-loop assembly (LI, L3 and H3) obtained from Monte Carlo simulation. After the significant difference is detected, the specific inter-Ca distance which contributes to the difference is identified using EDMA.The estimated and improved mean forms of the conformational samples of isolated LI loop and LI loop in three-loop assembly, CDR loops of antibody binding site, are described using EDMA and distance geometry (DGEOM). To the best of our knowledge, it is the first time the EDMA methods are used to analyze conformational samples of molecules obtained from Monte Carlo simulations. Therefore, validations of the EDMA methods using both positive control and negative control tests for the conformational samples of isolated LI loop and LI in three-loop assembly must be done. The EDMA-I bootstrap null hypothesis tests showed false positive results for the comparison of six samples of the isolated LI loop and true positive results for comparison of conformational samples of isolated LI loop and LI in three-loop assembly. The bootstrap confidence interval tests revealed true negative results for comparisons of six samples of the isolated LI loop, and false negative results for the conformational comparisons between isolated LI loop and LI in three-loop assembly. Different conformational sample sizes are further explored by combining the samples of isolated LI loop to increase the sample size, or by clustering the sample using self-organizing map (SOM) to narrow the conformational distribution of the samples being comparedmolecular conformations. However, there is no improvement made for both bootstrap null hypothesis and confidence interval tests. These results show that more work is required before EDMA methods can be used reliably as a method for comparison of samples obtained by Monte Carlo simulations.
Resumo:
The spatial limits of the active site in the benzylic hydroxylase enzyme of the fungus Mortierella isabellina were investigated. Several molecular probes were used in incubation experiments to determine the acceptability of each compound by this enzyme. The yields of benzylic alcohols provided information on the acceptability of the particular compound into the active site, and the enantiomeric excess values provided information on the "fit" of acceptable substrates. Measurements of the molecular models were made using Cambridge Scientific Computing Inc. CSC Chem 3D Plus modeling program. i The dimensional limits of the aromatic binding pocket of the benzylic hydroxylase were tested using suitably substituted ethyl benzenes. Both the depth (para substituted substrates) and width (ortho and meta substituted substrates) of this region were investigated, with results demonstrating absolute spatial limits in both directions in the plane of the aromatic ring of 7.3 Angstroms for the depth and 7.1 Angstroms for the width. A minimum requirement for the height of this region has also been established at 6.2 Angstroms. The region containing the active oxygen species was also investigated, using a series of alkylphenylmethanes and fused ring systems in indan, 1,2,3,4-tetrahydronaphthalene and benzocycloheptene substrates. A maximum distance of 6.9 Angstroms (including the 1.5 Angstroms from the phenyl substituent to the active center of the heme prosthetic group of the enzyme) has been established extending directly in ii front of the aromatic binding pocket. The other dimensions in this region of the benzylic hydroxylase active site will require further investigation to establish maximum allowable values. An explanation of the stereochemical distributions in the obtained products has also been put forth that correlates well with the experimental observations.