978 resultados para multivariate null intercepts model
Resumo:
Oral squamous cell carcinoma (OSCC) accounts for more than 95% of all malignant neoplasms in the oral cavity. Although several studies have shown the epidemiology of this cancer in Brazil, there do not seem to be any studies that describe the prognostic factors related to OSCC in the Amazon region. Therefore, the aim of this study was to determine the survival rate and prognostic significance of different factors in patients from this region affected by OSCC. Data from 85 patients with histologically confirmed squamous cell carcinoma of the tongue and floor of the mouth identified from the Ofir Loyola Hospital archives were collected and analyzed using univariate (log-rank test) and multivariate (Cox proportional hazard model) tests. The overall 5-year survival rate was found to be 27%. Univariate analysis showed that the 5-year survival rate was significantly higher for younger (<= 45 y) female patients, patients with T1-2 tumors and clinically clear neck nodes (N0), patients with early stage cancers (AJCC stage I-II), and patients treated with surgical procedures. However, multivariate analysis showed that the 5-year survival rate was significantly higher only in the younger patients and those who underwent surgical treatment. The age of the patient at the moment of diagnosis and treatment with surgical procedures were the only independent prognostic factors that affected the 5-year survival rate of the patients in this region.
Resumo:
This paper examines the causal links between fertility and female labor force participation in Bangladesh over the period 1974-2000 by specifying a bivariate and several trivariate models in a vector error correction framework. The three trivariate models alternatively include average age at first marriage for females, per capita GDP and infant mortality rate, which control for the effects of other socio-economic factors on fertility and female labor force participation. All the specified models indicate an inverse long-run relationship between fertility and female labor force participation. While the bivariate model also indicates bidirectional causality, the multivariate models confirm only a unidirectional causality – from labor force participation to fertility. Further, per capita GDP and infant mortality rate appear to Granger-cause both fertility and female labor force participation.
Resumo:
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading. Type 1 diabetes results in bone remodeling, suggesting that this disease might affect orthodontic tooth movement. The present study investigated the effects of the diabetic state on orthodontic tooth movement. An orthodontic appliance was placed in normoglycemic (NG), streptozotocin-induced diabetes (DB), and insulin-treated DB (IT) C57BL6/J mice. Histomorphometric analysis and quantitative PCR of periodontium were performed. The DB mice exhibited greater orthodontic tooth movement and had a higher number of tartrate-resistant acid phosphate (TRAP) -positive osteoclasts than NG mice. This was associated with increased expression of factors involved in osteoclast activity and recruitment (Rankl, Csf1, Ccl2, Ccl5, and Tnfa) in DB mice. The expression of osteoblastic markers (Runx2, Ocn, Col1, and Alp) was decreased in DB mice. Reversal of the diabetic state by insulin treatment resulted in morphological findings similar to those of NG mice. These results suggest that the diabetic state up-regulates osteoclast migration and activity and down-regulates osteoblast differentiation, resulting in greater orthodontic tooth movement.
Resumo:
To histomorphometrically investigate the repair of critical size defects (CSDs) and bone augmentation in cranial walls using block of sintered bovine-derived anorganic bone (sBDAB) graft. Forty guinea-pigs were divided into test (n=20) and CSD control (n=20) groups. In each animal, a full-thickness bone defect with 9.5 mm diameter was made in the frontal bone. The defects were filled with an sBDAB block soaked in blood in the test group and with blood clot in the CSD control group. The skulls were collected at 0 h (n=2) and 30, 90 and 180 days (n=6/group and period) postoperatively. The volume density and total volume of newly formed bone, sBDAB, blood vessels and connective tissue, vertical thickness of removed bone plug, sBDAB block and graft area were evaluated. The vertical thickness of the adapted sBDAB block was 3.8 times higher than that of the removed bone plug and did not show significant difference between periods, filling in average 29.8% of the total graft region. The sBDAB block exhibited complete osseointegration with the borders of the defect at 90 days. At 90 and 180 days, the vertical thickness of the graft was 279% in the average, and the total volume of bone augmentation was, respectively, 78.8% and 148.5% higher compared with the removed bone plug. The defects of the CDS control group showed limited osteogenesis and filling by connective tissue plus tegument. The sBDAB block can be used to promote repair of CSDs and bone augmentation in the craniomaxillofacial region, due to its good osteoconductive and slow resorptive properties. To cite this article:Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R. Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model.Clin. Oral Impl. Res. 20, 2009; 340-350.doi: 10.1111/j.1600-0501.2008.01659.x.
Resumo:
The Bariev model with open boundary conditions is introduced and analysed in detail in the framework of the Quantum Inverse Scattering Method. Two classes of independent boundary reflecting K-matrices leading to four different types of boundary fields are obtained by solving the reflection equations. The models are exactly solved by means of the algebraic nested Bethe ansatz method and the four sets or Bethe ansatz equations as well as their corresponding energy expressions are derived. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new completely integrable model of strongly correlated electrons is proposed which describes two competitive interactions: one is the correlated one-particle hopping, the other is the Hubbard-like interaction. The integrability follows from the fact that the Hamiltonian is derivable from a one-parameter family of commuting transfer matrices. The Bethe ansatz equations are derived by algebraic Bethe ansatz method.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.