932 resultados para multiscale entropy
Resumo:
A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.
Resumo:
The melting of the nascent state nylon 1010 samples melt condensation polymerized with different M(eta) have been studied by DSC. The relations of melting point, content of higher order crystal with M(eta) are similar, the plots like a peak, at M(eta)=1.48x10(4) have the maximum. The melting heat, melting entropy and crystallinity are decreased gradually with M(eta) increasing.
Resumo:
A comb-shaped polymer (BM350) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte complexes were made from the comb polymer and LICF(3)SO(3) by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close to 5.08 X 10(-5) Scm(-1) was obtained at room temperature and at a [Li]/[EO] ratio of about 0.12. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model. The results of mid-IR showed that the coordination of Li+ to side chains made the C-O-C band become broader and shift slightly. X-ray photoelectron spectroscopy analysis indicated that the oxygen atoms in the two situations could coordinate to Li+ and this coordination resulted in the reduction of the electron orbit binding energy of F and S.
Resumo:
Investigation of the redox thermodynamics of horse heart cytochrome c at bare glassy carbon electrodes has been performed using cyclic voltammetry with a nonisothermal electrochemical cell. The thermodynamic parameters of the electron-transfer reaction of cytochrome c have been estimated in different component buffer solutions. The change DELTAS(re)-degrees in reaction center entropy and the formal potential E-degrees' (at 25-degrees-C, vs. standard hydrogen electrode (SHE)) for cytochrome c are found to be -64.1 J K-1 mol-1 and 0.251 V in phosphate buffer, -64.8 J K-1 mol-1 and 0.257 V in Tris + HCl buffer, -65.6 J K-1 mol-1 and 0.261 V in Tris+CH3COOH buffer (pH 7.0, ionic strength 100 mM). The temperature dependence of the formal potential obtained in phosphate buffer with or without NaCl in the range 5-55-degrees-C shows biphase characteristics in an alkaline solution with an intersection point at ca. 44-degrees-C or 42-degrees-C, which should be due to a structural change in the protein moiety of cytochrome c. However, in acidic and neutral solutions only a monotonic relationship between E-degrees' and temperature is observed. The effect of the buffer component on E-degrees' for cytochrome c is also discussed.
Resumo:
Phenolphthalein poly(ether ether sulphone) (PES-C) was found to be miscible with uncured bisphenol-A-type epoxy resin, i.e. diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature within the whole composition range. Miscibility between PES-C and DGEBA is considered to be due mainly to the entropy contribution. However, dynamic mechanical analysis (d.m.a.) and scanning electron microscopy (SEM) studies revealed that PES-C exhibits different miscibility with four cured epoxy resins (ER). The overall compatibility and the resulting morphology of the cured blends are dependent on the choice of cure agent. For the blends cured with amines (4,4'-diaminodiphenylmethane (DDM) and 4,4'-diaminodiphenylsulphone (DDS)), no phase separation occurs as indicated by either d.m.a. or SEM. However, for the blends cured with anhydrides (maleic anhydride (MA) and phthalic anhydride (PA)), both d.m.a. and SEM clearly show evidence of phase separation. SEM study shows that the two phases interact well in the MA-cured blend while the interface between the phases in the PA-cured blend is poorly bonded. The differences in the overall compatibility and the resulting morphology between the amine-cured and anhydride-cured systems have been discussed from the points of view of both thermodynamics and kinetics.
Resumo:
The stability constants and thermodynamic functions for complexes of rare earth with L-phenylalanine have been determined by potentiometry and calorimetry at 25-degrees-C and ionic strength of 0.15mol.dm-3(NaCl). Stability of the complexes shows the "Tetrad effect". The entropy change makes a predominant contribution to the stability of these complexes. The ligand is coordinated to rare earth ions through its -CO2- and -NH2 group, and dehydration of ions plays an important role in coordination reaction.
Resumo:
The glass transition temperature (T(g)) of cyclic polystyrene was measured by differential scanning calorimetry. There was a marked difference in the glass transition behaviour between cyclic and linear polystyrene. In the low molecular weight region (M(n) < 5 x 10(3)), the T(g) of the cyclic polystyrene increased with decreasing M(n), contrary to that of linear polystyrene. With M(n) higher than 5 x 10(3), the T(g) of cyclic polystyrene increased with increasing M(n). The T(g) of cyclic and linear polystyrene approached the same constant value when the M(n) was high enough (M(n) > 10(5)). Combining the results of specific volume, it is believed that the variation of T(g) with molecular weight does not depend only on free volume effects but that configurational entropy is also an important factor.
Resumo:
The properties of miscible phenolphthalein poly(ether ether ketone)/phenoxy (PEK-C/phenoxy) blends have been measured by dynamic mechanical analysis and tensile testing. The blends were found to have single glass transition temperatures (T(g)) that vary continuously with composition. The tensile moduli exhibit positive deviations from simple additivity. Marked positive deviations were also observed for tensile strength. The tensile strengths of the 90/10 and 75/25 PEK-C/phenoxy blends are higher than those of both the pure components. Embrittlement, or transition from the brittle to the ductile mode of failure, occurs in the composition range of 50-25 wt% PEK-C. These observations suggest that mixing on the segmental level has occurred and that there is enough interaction between the components to decrease its internal mobility significantly. PEK-C was also found to be miscible with the epoxy monomer, diglycidyl ether of bisphenol A (DGEBA), as shown by the existence of a single glass transition temperature (T(g)) within the whole composition range. Miscibility between PEK-C and DGEBA could be considered to be due mainly to entropy. However, PEK-C was judged to be immiscible with the diaminodiphenylmethane-curved epoxy resin (DDM-cured ER). It was observed that the PEK-C/ER blends have two T(g), which remain invariant with composition and are almost the same as those of the pure components, respectively. Scanning electron microscopy showed that the PEK-C/ER blends have a two-phase structure. The different miscibility with PEK-C between DGEBA and the DDM-cured ER is considered to be due to the dramatic change in the chemical and physical nature of ER after curing.
Resumo:
The thermodynamics of micellization for polystyrene-b-poly(ethylene/propylene) two-Mock copolymer(SEP) in the mixtures of n-octane and benzene with different proportions have been studied in this paper, The critical micelle concentrations(GMC) of micelle solutions at various temperatures were measured by lost angle laser light scattering photometer(LALLS), The results shove that the micellization process of nonpolar copolymer SEP in hydrocarbon solvents ire exothermal, and the entropy change is negative, In contrast, far ordinary surfactants in water, it is the enthalpy contribution to the energy change which is responsible for micellization.
Resumo:
提出了一种基于加权模糊相对熵的电机转子故障模糊识别方法。该方法将加权思想引入到模糊相对熵,用于识别电机转子故障严重程度。加权方法的引入增加了信息量丰富的符号区间的模糊相对熵占全部区间模糊相对熵的比重,可以更充分、合理地利用该区间的故障信息进行故障识别。电机转子断条故障诊断仿真实验结果表明,提出的方法有效地实现了电机故障的定量分析,能够准确地识别出电机转子故障的严重程度,使算法的鲁棒性得到了改善,故障分类的可靠性及准确程度得到了提高。
Resumo:
首先利用模糊C-均值聚类算法在多特征形成的特征空间上对图像进行区域分割,并在此基础上对区域进行多尺度小波分解;然后利用柯西函数构造区域的模糊相似度,应用模糊相似度及区域信息量构造加权因子,从而得到融合图像的小波系数;最后利用小波逆变换得到融合图像·采用均方根误差、峰值信噪比、熵、交叉熵和互信息5种准则评价融合算法的性能·实验结果表明,文中方法具有良好的融合特性·
Resumo:
针对实时序列图像多目标识别问题提出了一种快速图像处理方法。该方法依据一定的先验知识和准则,对复杂背景图像进行窗口化,对每一个窗口独立进行自适应快速中值滤波,及基于局部图像灰度信息的自适应重新量化和最大熵分割处理,实现了对全景视场内预定目标的快速准确提取和识别。为动态环境中多目标条件下移动机器人的视觉定位、导航和目标跟踪所需图像处理技术提供了一种新的方法。
Resumo:
采用模糊熵函数对图象象素分类作出整体最优分类评价,实现了区域分割.利用矩及其函数做为各区域的特征表达,构成以区域为基元的符号特征集并描述图象内容。根据立体图象对间的几何关系,解出各区域(基元)的相对三维坐标。与象索匹配相比较,它可以获得较高精度的三维信息和可描述的景物信息.通过获取不同时空的各区域(基元)三维信息,确定了它们的空间运动状态。联系这些状态,构造出景物中物体间的空间关系和近似模型,实现了对景物的3-D识别和描述。
Resumo:
Conventional seismic attribute analysis is not only time consuming, but also has several possible results. Therefore, seismic attribute optimization and multi-attribute analysis are needed. In this paper, Fuyu oil layer in Daqing oil field is our main studying object. And there is much difference between seismic attributes and well logs. So under this condition, Independent Component Analysis (ICA) and Kohonen neural net are introduced to seismic attribute optimization and multi-attribute analysis. The main contents are as follows: (1) Now the method of seismic attribute compression is mainly principal component analysis (PCA). In this article, independent component analysis (ICA), which is superficially related to PCA, but much more powerful, is used to seismic reservoir characterizeation. The fundamental, algorithms and applications of ICA are surveyed. And comparation of ICA with PCA is stydied. On basis of the ne-entropy measurement of independence, the FastICA algorithm is implemented. (2) Two parts of ICA application are included in this article: First, ICA is used directly to identify sedimentary characters. Combined with geology and well data, ICA results can be used to predict sedimentary characters. Second, ICA treats many attributes as multi-dimension random vectors. Through ICA transform, a few good new attributes can be got from a lot of seismic attributes. Attributes got from ICA optimization are independent. (3) In this paper, Kohonen self-organizing neural network is studied. First, the characteristics of neural network’s structure and algorithm is analyzed in detail, and the traditional algorithm is achieved which has been used in seism. From experimental results, we know that the Kohonen self-organizing neural network converges fast and classifies accurately. Second, the self-organizing feature map algorithm needs to be improved because the result of classification is not very exact, the boundary is not quite clear and the velocity is not fast enough, and so on. Here frequency sensitive principle is introduced. Combine it with the self-organizing feature map algorithm, then get frequency sensitive self-organizing feature map algorithm. Experimental results show that it is really better. (4) Kohonen self-organizing neural network is used to classify seismic attributes. And it can be avoided drawing confusing conclusions because the algorithm’s characteristics integrate many kinds of seismic features. The result can be used in the division of sand group’s seismic faces, and so on. And when attributes are extracted from seismic data, some useful information is lost because of difference and deriveative. But multiattributes can make this lost information compensated in a certain degree.
Resumo:
Toppling is a major failure model in anti-dip layered rock slopes. Because of the limited by testing means and experimental apparatus, present research on the deformation mechanism and stability analysis are mainly focus on the 2-Dimensional deformation, and the research really based on 3-Dimension is still limited. Therefore, based on the present research station, the article rely on the important hydroelectric project of typical anti-dip layered rock slopes -- The left bank slope of Long-tan hydropower-station in Guang Xi, China, and focused on the influencing factors, deformation mechanism and stability analysis of anti-dip layered rock slopes, three problems as follows are researched in this paper. (1) Deformation influencing factor analysis on ant-dip layered rock slopes Three influencing factors are included: geological factor, engineering factor and environmental factor. It is concluded that the toppling deformation of anti-dip layered rock slopes are more sensitive to geological and engineering factors, but less sensitive to environmental factor. In addition, the sensitivity of various factors to the rock toppling deformation is also arranged sequentially as follows: construction, gravitation, rainfall (underground water) and rock structure intensity, etc. (2) 3D deformation study on the anti-dip layered toppling rock slopes Used 3D Distinct Element Method (3DEC) analyzed the 3D deformation characteristic of anti-dip layered rock slops. It can be seen that the toppling characteristics are obvious when the inter-angle between slope direction and layer striking direction is under 20o, when the inter-angle is over 20o and equal or less than 40o,the toppling deformation characteristics decrease sharply with increase of inter-angle, when the inter-angle is over 40o , the slope deformation is not controlled by joints but influenced by other failure mode. Therefore, in order to quantify the toppling characteristics, a differential value of displacement vector angle between layered rock slope and block rock slope is proposed as a key index to distinguish failure model for anti-dip layered rock slopes, and it was applied to study the toppling of the rock slopes at Guangxi Long-tan hydropower station, China. The results indicated that the index was effective and instructive for analyzing the anti-dip layered rock slopes. (3) Stability analysis methods Because of the imperfection of some present slope analysis methods, based on slope failure mode and those three influencing factors, “slope stability entropy” method is defined in this paper, which makes good use of the sensitivity of relational matrix to influencing factors on slope stability and the qualification characteristics for information entropy to the irregularity of slope deformation. By this method, not only the randomness of geologic body on the base of dynamic analysis of slope failure mode is fully concerned, but also it makes the analysis time-saving and simple. Finally, the research findings were used to the engineering example successfully, and rational conclusion has been obtained.