923 resultados para multiple objective programming
Resumo:
The financial health of beef cattle enterprises in northern Australia has declined markedly over the last decade due to an escalation in production and marketing costs and a real decline in beef prices. Historically, gains in animal productivity have offset the effect of declining terms of trade on farm incomes. This raises the question of whether future productivity improvements can remain a key path for lifting enterprise profitability sufficient to ensure that the industry remains economically viable over the longer term. The key objective of this study was to assess the production and financial implications for north Australian beef enterprises of a range of technology interventions (development scenarios), including genetic gain in cattle, nutrient supplementation, and alteration of the feed base through introduced pastures and forage crops, across a variety of natural environments. To achieve this objective a beef systems model was developed that is capable of simulating livestock production at the enterprise level, including reproduction, growth and mortality, based on energy and protein supply from natural C4 pastures that are subject to high inter-annual climate variability. Comparisons between simulation outputs and enterprise performance data in three case study regions suggested that the simulation model (the Northern Australia Beef Systems Analyser) can adequately represent the performance beef cattle enterprises in northern Australia. Testing of a range of development scenarios suggested that the application of individual technologies can substantially lift productivity and profitability, especially where the entire feedbase was altered through legume augmentation. The simultaneous implementation of multiple technologies that provide benefits to different aspects of animal productivity resulted in the greatest increases in cattle productivity and enterprise profitability, with projected weaning rates increasing by 25%, liveweight gain by 40% and net profit by 150% above current baseline levels, although gains of this magnitude might not necessarily be realised in practice. While there were slight increases in total methane output from these development scenarios, the methane emissions per kg of beef produced were reduced by 20% in scenarios with higher productivity gain. Combinations of technologies or innovative practices applied in a systematic and integrated fashion thus offer scope for providing the productivity and profitability gains necessary to maintain viable beef enterprises in northern Australia into the future.
Resumo:
Establishment of the rumen microbiome can be affected by both early-life dietary measures and rumen microbial inoculation. This study used a 2 × 3 factorial design to evaluate the effects of inclusion of dietary fat type and the effects of rumen inoculum from different sources on ruminal bacterial communities present in early stages of the lambs’ life. Two different diets were fed ad libitum to 36 pregnant ewes (and their lambs) from 1 month pre-lambing until weaning. Diets consisted of chaffed lucerne and cereal hay and 4% molasses, with either 4% distilled coconut oil (CO) provided as a source of rumen-active fat or 4% Megalac® provided as a source of rumen-protected fat (PF). One of three inoculums was introduced orally to all lambs, being either (1) rumen fluid from donor ewes fed the PF diet; (2) rumen fluid from donor ewes fed CO; or (3) a control treatment of MilliQ-water. After weaning at 3 months of age, each of the six lamb treatment groups were grazed in spatially separated paddocks. Rumen bacterial populations of ewes and lambs were characterised using 454 amplicon pyrosequencing of the V3/V4 regions of the 16S rRNA gene. Species richness and biodiversity of the bacterial communities were found to be affected by the diet in ewes and lambs and by inoculation treatment of the lambs. Principal coordinate analysis and analysis of similarity (ANOSIM) showed between diet differences in bacterial community groups existed in ewes and differential bacterial clusters occurred in lambs due to both diet and neonatal inoculation. Diet and rumen inoculation acted together to clearly differentiate the bacterial communities through to weaning, however the microbiome effects of these initial early life interventions diminished with time so that rumen bacterial communities showed greater similarity 2 months after weaning. These results demonstrate that ruminal bacterial communities of newborn lambs can be altered by modifying the diet of their mothers. Moreover, the rumen microbiome of lambs can be changed by diet while they are suckling or by inoculating their rumen, and resulting changes in the rumen bacterial microbiome can persist beyond weaning.
Resumo:
The built environment is a major contributor to the world’s carbon dioxide emissions, with a considerable amount of energy being consumed in buildings due to heating, ventilation and air-conditioning, space illumination, use of electrical appliances, etc., to facilitate various anthropogenic activities. The development of sustainable buildings seeks to ameliorate this situation mainly by reducing energy consumption. Sustainable building design, however, is a complicated process involving a large number of design variables, each with a range of feasible values. There are also multiple, often conflicting, objectives involved such as the life cycle costs and occupant satisfaction. One approach to dealing with this is through the use of optimization models. In this paper, a new multi-objective optimization model is developed for sustainable building design by considering the design objectives of cost and energy consumption minimization and occupant comfort level maximization. In a case study demonstration, it is shown that the model can derive a set of suitable design solutions in terms of life cycle cost, energy consumption and indoor environmental quality so as to help the client and design team gain a better understanding of the design space and trade-off patterns between different design objectives. The model can very useful in the conceptual design stages to determine appropriate operational settings to achieve the optimal building performance in terms of minimizing energy consumption and maximizing occupant comfort level.
Resumo:
This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.
Resumo:
A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.
Resumo:
Objective To identify measures that most closely relate to hydration in healthy Brahman-cross neonatal calves that experience milk deprivation. Methods In a dry tropical environment, eight neonatal Brahman-cross calves were prevented from suckling for 2–3 days during which measurements were performed twice daily. Results Mean body water, as estimated by the mean urea space, was 74 ± 3% of body weight at full hydration. The mean decrease in hydration was 7.3 ± 1.1% per day. The rate of decrease was more than three-fold higher during the day than at night. At an ambient temperature of 39°C, the decrease in hydration averaged 1.1% hourly. Measures that were most useful in predicting the degree of hydration in both simple and multiple-regression prediction models were body weight, hindleg length, girth, ambient and oral temperatures, eyelid tenting, alertness score and plasma sodium. These parameters are different to those recommended for assessing calves with diarrhoea. Single-measure predictions had a standard error of at least 5%, which reduced to 3–4% if multiple measures were used. Conclusion We conclude that simple assessment of non-suckling Brahman-cross neonatal calves can estimate the severity of dehydration, but the estimates are imprecise. Dehydration in healthy neonatal calves that do not have access to milk can exceed 20% (>15% weight loss) in 1–3 days under tropical conditions and at this point some are unable to recover without clinical intervention.
Resumo:
Orgasm is a subjective experience accompanied by involuntary muscle contractions. We hypothesized that orgasm in women would be distinguishable by frequency analysis of a perineal muscle-derived signal. Rectal pressure, an index of perineal muscle activity, was measured continuously in 23 healthy women during different sexual tasks: receiving clitoral stimulation, imitation of orgasm, and attempt to reach orgasm, in which case the women were asked to report whether orgasm had been reached ("orgasm") or not ("failed orgasm attempt"). We performed spectral analysis on the rectal pressure data and calculated the spectral power in the frequency bands delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-25 Hz). The most significant and most important difference in spectral power between orgasm and both control motor tasks (imitation of orgasm and failed orgasm attempt) was found in the alpha band. An objective rule based on spectral power in the alpha band recognized 94% (29/31) of orgasms and correctly labeled 69% (44/64) of all orgasm attempts as either successful or failed. Because outbursts of alpha fluctuations in rectal pressure only occurred during orgasm and not during voluntary imitation of orgasm or failed attempts, we propose that they represent involuntary contractions of muscles in the rectal vicinity. This is the first objective and quantitative measure that has a strong correspondence with the subjective experience of orgasm.