944 resultados para models for teaching
Resumo:
Companies use business process models to represent their working procedures in order to deploy services to markets, to analyze them, and to improve upon them. Competitive markets necessitate complex procedures, which lead to large process specifications with sophisticated structures. Real world process models can often incorporate hundreds of modeling constructs. While a large degree of detail complicates the comprehension of the processes, it is essential to many analysis tasks. This paper presents a technique to abstract, i.e., to simplify process models. Given a detailed model, we introduce abstraction rules which generalize process fragments in order to bring the model to a higher abstraction level. The approach is suited for the abstraction of large process specifications in order to aid model comprehension as well as decomposing problems of process model analysis. The work is based on process structure trees that have recently been introduced to the field of business process management.
Resumo:
The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.
Resumo:
Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.
Resumo:
The motion of marine vessels has traditionally been studied using two different approaches: manoeuvring and seakeeping. These two approaches use different reference frames and coordinate systems to describe the motion. This paper derives the kinematic models that characterize the transformation of motion variables (position, velocity, accelerations) and forces between the different coordinate systems used in these theories. The derivations hereby presented are done in terms of the formalism adopted in robotics. The advantage of this formulation is the use of matrix notation and operations. As an application, the transformation of linear equations of motion used in seakeeping into body-fixed coordinates is considered for both zero and forward speed.
Resumo:
Analogy plays a central role in legal reasoning, yet how to analogize is poorly taught and poorly practiced. We all recognize when legal analogies are being made: when a law professor suggests a difficult hypothetical in class and a student tentatively guesses at the answer based on the cases she read the night before, when an attorney advises a client to settle because a previous case goes against him, or when a judge adopts one precedent over another on the basis that it better fits the present case. However, when it comes to explaining why certain analogies are compelling, persuasive, or better than the alternative, lawyers usually draw a blank. The purpose of this article is to provide a simple model that can be used to teach and to learn how analogy actually works, and what makes one analogy superior to a competing analogy. The model is drawn from a number of theories of analogy making in cognitive science. Cognitive science is the “long-term enterprise to understand the mind scientifically.” The field studies the mechanisms that are involved in cognitive processes like thinking, memory, learning, and recall; and one of its main foci has been on how people construct analogies. The lessons from cognitive science theories of analogy can be applied to legal analogies to give students and lawyers a better understanding of this fundamental process in legal reasoning.
Resumo:
Teaching is a core function of higher education and must be effective if it is to provide students with learning experiences that are stimulating, challenging and rewarding Obtaining feedback on teaching is indispensable to enhancing the quality of learning design, facilitating personal and/or professional development and maximising student learning outcomes. Peer review of teaching has the potential to improve the quality of teaching at tertiary level, by encouraging critical reflection on teaching, innovation in teaching practice and scholarship of teaching at all academic levels. However, embedding peer review within the culture of teaching and learning is a significant challenge that requires sustained commitment from senior leadership as well as those in leadership roles within local contexts.
Resumo:
Clinical experience, or experience in the ‘real world’ of practice, is a fundamental component of many health professional courses. It often involves students undertaking practical experience in clinical workplace settings, typically referred to as clinical placements, under the supervision of health professionals. Broadly speaking, the role of clinical supervisors, or teachers, is aimed at assisting students to integrate the theoretical and skills based components of the curriculum within the context of patient/client care (Erstzen et al 2009). Clinical experience also provides students with the opportunity to assimilate the attitudes, values and skills which they require to become appropriately skilled professionals in the environments in which they will eventually practise. However, clinical settings are particularly challenging learning environments for students. Unlike classroom learning, students in the clinical setting frequently find themselves involved in unplanned and often complex activities with patients and other health care providers, being supervised by a variety of clinical staff who have very different methods and styles of teaching, and negotiating bureaucratic or hierarchical structures in busy clinical workplaces where they may only be spending a limited amount of time. Kilminster et al (2007) also draw attention to tensions that may exist between the learning needs of students and the provision of quality care or need to prevent harm to the patient (e.g. Elkind et al 2007). All of these factors complicate the realisation of clinical education goals and underscore the need for effective clinical teaching practices that maximise student learning in clinical environments. This report provides a summary of work that has been achieved in relation to ALTC projects and fellowships associated with clinical teaching, and a review of scholarly publications relevant to this field. The report also makes recommendations based on issues identified and/or where further work is indicated. The projects and fellowships reviewed cover a range of discipline areas including Biology, Paramedic Practice, Clinical Exercise Physiology, Occupational Therapy, Speech Pathology, Physiotherapy, Pharmacy, Nursing and Veterinary Science. The main areas of focus cover issues related to curriculum, particularly in relation to industry expectations of ‘work-ready’ graduates and the implications for theoretical and practical, or clinical preparation; development of competency assessment tools that are nationally applicable across discipline-specific courses; and improvement of clinical learning through strategies targeting the clinical learning environment, building the teaching capacity of clinical supervisors and/or enhancing the clinical learning/teaching process.
Resumo:
This paper describes the Teaching Teachers of the Future (TTF) Project – a national project funded ($8.8mil AUD) by the Australian Government. The project was aimed at building the capacity of student teachers to use technology to improve student learning outcomes. It discusses the aims and objectives of the project, its genesis in a changing educational and political landscape, the use of TPACK as a theoretical scaffold, and briefly reports on the operations of the various components and part-ners. Further, it discusses the research opportunities afforded by the project includ-ing a national survey of all PSTs in Australia gauging their TPACK confidence and the use of the Most Significant Change (MSC) methodology. Finally the paper dis-cusses the outcomes of the project and its future.
Resumo:
This report documents the outcomes of the OLT funded project on Supporting Future Curriculum Leaders in Embedding Indigenous Knowledges on Teaching Practicum. This project investigated the learning and teaching relationships between pre-service teachers and their supervisors on practicum, with pre-service teachers who were specifically engaged (Aboriginal and Torres Strait Islander and non-Indigenous pre-service teachers studying the Indigenous Studies minor) with embedding Indigenous knowledge and perspectives in their teaching practice. It explored the negotiations of expectations, role modelling and the interactions that occur between pre-service teachers, their supervising teachers and QUT staff involved in supporting teaching practicum. The intent was to design a model to develop long term, future-oriented opportunities for teachers to develop expertise in embedding Indigenous knowledge and perspectives in curriculum, pedagogy and assessment.
Resumo:
Aims To evaluate if a revamped business management course for 4th year undergraduate pharmacy students had achieved the course aims of not only improving pharmacy students’ perceived understanding of pharmacy business management topics but also increasing their confidence in their business management knowledge and skills. Background Student feedback from previous years had indicated that the cohort had struggled to translate theoretical business management concepts learned in the classroom into practice in the workplace. To address this problem the course has been changed to a ‘flipped classroom’ format with face-to-face time focusing on case-based scenarios and interactive classroom discussion with some role plays. Method Both course assessment throughout the semester and a student survey informed the evaluation process. Results After completing the course, students felt they had increased their knowledge of business management concepts but many indicated that they lacked the confidence to undertake basic management functions. Conclusions Further course restructuring is required with a greater focus on skills development.
Resumo:
The aim of this study was to describe the educational experiences shaping the teaching and learning beliefs held by a group of beginning lecturers in higher education at various tertiary institutions in the Pacific Island Countries (PICs). A total of sixty three essays written by participants in an online course on teaching in higher education comprised the data for the study. A modified version of narrative analysis was used. This is a powerful methodology in qualitative research that can provide remarkable insights into individuals’ beliefs. The critical experiences that were thought to shape their beliefs in teaching and learning were identified and discussed in the light of relevant literature. The participants described a range of influences that shaped their beliefs about teaching and learning including realisation about the need to work harder and know more, the importance of independence, support systems, curriculum, qualities of a teacher, teaching and learning process, teaching and learning strategies, and learning environments. This information was useful in teaching these students and for further courses.
Resumo:
The operation of the law rests on the selection of an account of the facts. Whether this involves prediction or postdiction, it is not possible to achieve certainty. Any attempt to model the operation of the law completely will therefore raise questions of how to model the process of proof. In the selection of a model a crucial question will be whether the model is to be used normatively or descriptively. Focussing on postdiction, this paper presents and contrasts the mathematical model with the story model. The former carries the normative stamp of scientific approval, whereas the latter has been developed by experimental psychologists to describe how humans reason. Neil Cohen's attempt to use a mathematical model descriptively provides an illustration of the dangers in not clearly setting this parameter of the modelling process. It should be kept in mind that the labels 'normative' and 'descriptive' are not eternal. The mathematical model has its normative limits, beyond which we may need to critically assess models with descriptive origins.
Resumo:
Institutional graduate capabilities and discipline threshold learning outcomes require science students to demonstrate ethical conduct and social responsibility. However, neither the teaching nor the assessment of these concepts is straightforward. Australian chemistry academics participated in a workshop in 2013 to discuss and develop teaching and assessment in these areas and this paper reports on the outcomes of that workshop. Controversial issues discussed included: How broad is the mandate of the teacher, how should the boundaries between personal values and ethics be drawn, and how can ethics be assessed without moral judgement? In this position paper, I argue for a deep engagement with ethics and social justice, achieved through case studies and assessed against criteria that require discussion and debate. Strategies to effectively assess science students’ understanding of ethics and social responsibility are detailed.
Resumo:
All design classes followed a systematic design approach, that, in an abstract way, can be characterized by figure 1. This approach is based on our design approach [1] that we labeled DUTCH (design for users and tasks, from concepts to handles).Consequently, each course starts with collecting, modeling, and analyzing an existing situation. The next step is the development of a vision on a future domain world where new technology and / or new representations have been implemented. This second step is the first tentative global design that will be represented in scenarios or prototypes and can be assessed. This second design model is based on both the client’s requirements and technological possibilities and challenges. In an iterative way multiple instantiations of detail design may follow, that each can be assessed and evaluated again...
Resumo:
This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.