922 resultados para microvascular blood flow
Resumo:
Regular exercise is known to be effective in the prevention and treatment of cardiovascular disease. Among the cardioprotectant mechanisms influenced by exercise, the endothelium is becoming recognised as a major target. Preservation of endothelial cell structure is vital for frictionless blood flow, prevention of macrophage and lipid infiltration and, ultimately, optimal vascular function. Exercise causes various kinds of mechanical, chemical and thermal stresses, and repeated exposure to these stresses may precondition the endothelial cell to future stresses through a number of different mechanisms. This review discusses stress-induced changes in endothelial cell morphology, biochemistry and components of platelet activation and cell adhesion that impact on endothelial cell structure. An enhanced understanding of the effects of exercise on the endothelial cell will assist in directing future research into the prevention of cardiovascular disease. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio-arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio-arterial pathway across the respiratory lamellae; an arterio-arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.
Resumo:
Passive tilting increases ventilation in healthy subjects; however, controversy surrounds the proposed mechanism. This study is aimed to evaluate the possible mechanism for changes to ventilation following passive head-up tilt (HUT) and active standing by comparison of a range of ventilatory, metabolic and mechanical parameters. Ventilatory parameters (V (T), V (E), V (E)/VO2, V (E)/VCO2, f and PetCO(2)), functional residual capacity (FRC), respiratory mechanics with impulse oscillometry; oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured in 20 healthy male subjects whilst supine, following HUT to 70 degrees and unsupported standing. Data were analysed using a linear mixed model. HUT to 70 degrees from supine increased minute ventilation (V (E)) (P < 0.001), tidal volume (V (T)) (P=0.001), ventilatory equivalent for O-2 (V (E)/VO2) (P=0.020) and the ventilatory equivalent for CO2 (V (E)/VCO2) (P < 0.001) with no change in f (P=0.488). HUT also increased FRC (P < 0.001) and respiratory system reactance (X5Hz) (P < 0.001) with reduced respiratory system resistance (R5Hz) (P=0.004) and end-tidal carbon dioxide (PetCO(2)) (P < 0.001) compared to supine. Standing increased V (E) (P < 0.001), V (T) (P < 0.001) and V (E)/VCO2 (P=0.020) with no change in respiratory rate (f) (P=0.065), V (E)/VO2 (P=0.543). Similar changes in FRC (P < 0.001), R5Hz (P=0.013), X5Hz (P < 0.001) and PetCO(2) (P < 0.001) compared to HUT were found. In contrast to HUT, standing increased VO2 (P=0.002) and VCO2 (P=0.048). The greater increase in V (E) in standing compared to HUT appears to be related to increased VO2 and VCO2 associated with increased muscle activity in the unsupported standing position. This has implications for exercise prescription and rehabilitation of critically ill patients who have reduced cardiovascular and respiratory reserve.
Resumo:
The nongenomic effects of aldosterone in disease states associated with endothelial dysfunction may differ from those in healthy subjects. The effects of locally infused aldosterone on the forearm blood flow and volume were studied in optimally treated patients with chronic heart failure (CHF). At baseline and after incremental intrabrachial aldosterone, forearm blood flow was assessed using conventional strain gouge plethysmography, and forearm venous volume was assessed by radionuclide plethysmography. Constriction of the resistance vasculature of the forearm without significant effect on forearm venous capacitance was demonstrated in response to aldosterone in patients treated for CHF. (C) 2005 by Excerpta Medica Inc.
Resumo:
The ease with which we perform tasks such as opening the lid of a jar, in which the two hands execute quite different actions, belies the fact that there is a strong tendency for the movements of the upper limbs to be drawn systematically towards one another. Mirror movements, involuntary contractions during intended unilateral engagement of the opposite limb, are considered pathological, as they occur in association with specific disorders of the CNS. Yet they are also observed frequently in normally developing children, and motor irradiation, an increase in the excitability of the (opposite) homologous motor pathways when unimanual movements are performed, is a robust feature of the mature motor system. The systematic nature of the interactions that occur between the upper limbs has also given rise to the expectation that functional improvements in the control of a paretic limb may occur when movements are performed in a bimanual context. In spite of the ubiquitous nature of these phenomena, there is remarkably little consensus concerning the neural basis of their mediation. In the present review, consideration is given to the putative roles of uncrossed corticofugal fibers, branched bilateral corticomotoroneuronal projections, and segmental networks. The potential for bilateral interactions to occur in various brain regions including the primary motor cortex, the supplementary motor area, non-primary motor areas, the basal ganglia, and the cerebellum is also explored. This information may provide principled bases upon which to evaluate and develop task and deficit-specific programs of movement rehabilitation and therapy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Many marine reptiles and birds possess extrarenal salt glands that facilitate the excretion of excess sodium and chloride ions accumulated as a consequence of living in saline environments. Control of the secretory activity of avian salt glands is under neural control, but little information is available on the control of reptilian salt glands. Innervation of the lingual salt glands of the salt water crocodile, Crocodylus porosus, was examined in salt water-acclimated animals using histological methods. Extensive networks of both cholinergic and adrenergic nerve fibres were identified close to salt-secreting lobules and vasculature. The identification of both catecholamine-containing and cholinergic neurons in the salt gland epithelium and close to major blood vessels in the tissue suggests the action of the neurotransmitters on the salt-secreting epithelium itself and the rich vascular network of the lingual salt glands.
Resumo:
Myopia (short-sightedness) is a visual problem associated with excessive eye growth and vitreous chamber expansion. Within the eye serotonin (5-hydroxytryptamine, 5-HT) appears to have a variety of effects, it alters retinal amacrine cell processing, increases intraocular pressure, constricts ocular blood vessels, and is also mitogenic. This study sought to determine the role of the retinal serotonin system in eye growth regulation. Myopia was produced in 7-day-old chicks using -15 D spectacle lenses (LIM) and form deprivation (FDM). The effect on LIM and FDM of daily intravitreal injections of a combination of 5-HT receptor antagonists (1, 10, 50 mu M), 5-HT2 selective antagonist (Mianserin 0.5, 20 mu M) were assessed. Counts were performed of serotonin and tyrosine hydroxylase positive neurons and the relative density used to account for areal changes due to eye growth. The effect of LIM and lens-induced hyperopia (LIH) on the numbers of 5-HT-containing amacrine cells in the retina were then determined. The combination of the 5-HT receptor antagonists inhibited LIM by approximately half (1 mu M RE: -7.12 +/- 1.0 D, AL: 0.38 +/- 0.06 mm vs. saline RE: -13.19 +/- 0.65 D, AL: 0.64 +/- 0.03 mm. RE: p < 0.01, AL: p < 0.01), whereas FDM was not affected (1 mu M RE: -8.88 +/- 1.10 D). These data suggest that serotonin has a stimulatory role in LIM, although high doses of serotonin were inhibitory (1 mu M RE: -9.30 +/- 1.34 D). 5-HT immunoreactivity was localised to a subset of amacrine cell bodies in the inner nuclear layer of the retina, and to two synaptic strata in the inner plexiform layer. LIM eyes had increased numbers of 5-HT-containing amacrine cells in the central retina (12.5%). Collectively, these results suggest that manipulations to the serotonin system can alter the eye growth process but the role of the transmitter system within this process remains unclear. (c) 2005 Elsevier Ltd. All rights reserved.