953 resultados para market mechanism
Resumo:
Although the mechanisms of climatic fluctuations are not completely understood, changes in global solar irradiance show a link with regional precipitation. A proposed mechanism for this linkage begins with absorption of varying amounts of solar energy by tropical oceans, which may aid in development of ocean temperature anomalies. These anomalies are then transported by major ocean currents to locations where the stored energy is released into the atmosphere, altering pressure and moisture patterns that can ultimately affect regional precipitation. Correlation coefficients between annual averages of monthly differences in empirically modeled solar-irradiance variations and annual state-divisional precipitation values in the United States for 1950 to 1988 were computed with lag times of 0 to 7 years. The highest correlations (R=0.65) occur in the Pacific Northwest with a lag time of 4 years, which is about equal to the travel time of water within the Pacific Gyre from the western tropical Pacific Ocean to the Gulf of Alaska. With positive correlations, droughts coincide with periods of negative irradiance differences (dry, high-pressure development), and wet periods coincide with periods of positive differences (moist, low-pressure development).
Compliant interfaces: A mechanism for relaxation of dislocation pile-ups in a sheared single crystal
Resumo:
Loligo opalescens live less than a year and die after a short spawning period before all oocytes are expended. Potential fecundity (EP), the standing stock of all oocytes just before the onset of spawning, increased with dorsal mantle length (L), where EP = 29.8L. For the average female squid (L of 129 mm), EP was 3844 oocytes. During the spawning period, no oogonia were produced; therefore the standing stock of oocytes declined as they were ovulated. This decline in oocytes was correlated with a decline in mantle condition and an increase in the size of the smallest oocyte in the ovary. Close agreement between the decline in estimated body weight and standing stock of oocytes during the spawning period indicated that maturation and spawning of eggs could largely, if not entirely, be supported by the conversion of energy reserves in tissue. Loligo opalescens, newly recruited to the spawning population, ovulated about 36% of their potential fecundity during their first spawning day and fewer ova were released in subsequent days. Loligo opalescens do not spawn all of their oocytes; a small percentage of the spawning population may live long enough to spawn 78% of their potential fecundity. Loligo opalescens are taken in a spawning grounds fishery off California, where nearly all of the catch are mature spawning adults. Thirty-three percent of the potential fecundity of L. opalescens was deposited before they were taken by the fishery (December 1998−99). This observation led to the development of a management strategy based on monitoring the escapement of eggs from the fishery. The strategy requires estimation of the fecundity realized by the average squid in the population which is a function of egg deposition and mortality rates. A model indicated that the daily total mortality rate on the spawning ground may be about 0.45 and that the average adult may live only 1.67 days after spawning begins. The rate at which eggs escape the fishery was modeled and the sensitivity of changing daily rates of fishing mortality, natural mortality, and egg deposition was examined. A rapid method for monitoring the fecundity of the L. opalescens catch was developed.
Resumo:
The California market squid (Loligo opalescens Berry), also known as the opalescent inshore squid (FAO), plays a central role in the nearshore ecological communities of the west coast of the United States (Morejohn et al., 1978; Hixon, 1983) and it is also a prime focus of California fisheries, ranking first in dollar value and tons landed in recent years (Vojkovich, 1998). The life span of this species is only 7−10 months after hatching, as ascertained by aging statoliths (Butler et al., 1999; Jackson, 1994; Jackson and Domier, 2003) and mariculture trials (Yang, et al., 1986). Thus, annual recruitment is required to sustain the population. The spawning season ranges from April to November and spawning peaks from May to June. In some years there can be a smaller second peak in November. In Monterey Bay, the squids are fished directly on the egg beds, and the consequences of this practice for conservation and fisheries management are unknown but of some concern (Hanlon, 1998). Beginning in April 2000, we began a study of the in situ spawning behavior of L. opalescens in the southern Monterey Bay fishing area.
Resumo:
Novel data on the spatial and temporal distribution of fishing effort and population abundance are presented for the market squid fishery (Loligo opalescens) in the Southern California Bight, 1992−2000. Fishing effort was measured by the detection of boat lights by the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Visual confirmation of fishing vessels by nocturnal aerial surveys indicated that lights detected by satellites are reliable indicators of fishing effort. Overall, fishing activity was concentrated off the following Channel Islands: Santa Rosa, Santa Cruz, Anacapa, and Santa Catalina. Fishing activity occurred at depths of 100 m or less. Landings, effort, and squid abundance (measured as landings per unit of effort, LPUE) markedly declined during the 1997−98 El Niño; landings and LPUE increased afterwards. Within a fishing season, the location of fishing activity shifted from the northern shores of Santa Rosa and Santa Cruz Islands in October, the typical starting date for squid fishing in the Bight, to the southern shores by March, the typical end of the squid season. Light detection by satellites offers a source of fine-scale spatial and temporal data on fishing effort for the market squid fishery off California, and these data can be integrated with environmental data and fishing logbook data in the development of a management plan.