967 resultados para liquid crystal phase shifters


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work reports the compositional analysis of thirteen different packed fruit juices using high performance liquid chromatography (HPLC). Vitamin C, organic acids (citric and malic) and sugars (fructose, glucose and sucrose) were separated, analyzed and quantified using different reverse phase methods. A new rapid reverse phase HPLC method was developed for routine analysis of vitamin C in fruit juices. The precision results of the methods showed that the relative standard deviations of the repeatability and reproducibility were < 0.05 and < 0.1 respectively. Correlation coefficient of the calibration models developed was found to be higher than 0.99 in each case. It has been found that the content of Vitamin C was less variable amongst different varieties involved in the study. It is also observed that in comparison to fresh juices, the packed juices contain lesser amounts of vitamin C. Citric acid was found as the major organic acids present in packed juices while maximum portion of sugars was of sucrose. Comparison of the amount of vitamin C, organic acids and sugars in same fruit juice of different commercial brands is also reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the impact of partially wetting particles of tens of micrometers on inversion instability of agitated liquid liquid dispersions. Particles of this size can be easily separated from the exit streams to avoid downstream processing-related issues. The results show that the presence of hydrophilic particles in small quantities (volume fraction range of 2 X 10(-4) to 1.25 x 10(-2)) significantly decreases the dispersed phase fraction at which water-in-oil (w/o) dispersions invert but leaves the inversion of oil-in-water (o/w) dispersions nearly unaffected. The addition of the same particles after they are hydrophobized decreases the dispersed phase fraction at which o/w dispersions invert but leaves the inversion of w/o dispersions unaffected. These findings suggest an increased rate of coalescence of drops when particles wet drops preferentially and a marginal decrease when they wet the continuous phase preferentially. High-speed conductivity measurements on w/o dispersion show transient conduction of a few hundred milliseconds duration through voltage pulses. Close to the inversion point, voltage pulses appear at high frequency for even 7 cm separation between the electrodes. The presence of hydrophilic particles produces a nearly identical signal at a significantly lower dispersed phase fraction itself, close to the new lowered inversion point in the presence of particles. We propose formation of elongated domains of the conducting dispersed phase through a rapid coalescence-deformation-breakup process to explain the new observations. The voltage signal appears as a forerunner of inversion instability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal interface materials (TIMs) form a mechanical and thermal link between a heat source and a heat sink. Thus, they should have high thermal conductivity and high compliance to efficiently transfer heat and accommodate any differential strain between the heat source and the sink, respectively. This paper reports on the processing and the characterization of potential metallic TIM composite solders comprising of Cu, a high conductivity phase, uniformly embedded in In matrix, a highly compliant phase. We propose the fabrication of such a material by a two-step fabrication technique comprising of liquid phase sintering (LPS) followed by accumulative roll bonding (ARB). To demonstrate the efficacy of the employed two-step processing technique, an In-40 vol. % Cu composite solder was produced first using LPS with short sintering periods (30 or 60 s at 160 degrees C) followed by ARB up to five passes, each pass imposing a strain of 50%. Mechanical response and electrical and thermal conductivities of the fabricated samples were evaluated. It was observed that processing through ARB homogenizes the distribution of Cu in an In matrix, disintegrates the agglomerates of Cu powders, and also significantly increases thermal and electrical conductivities, almost attaining theoretically predicted values, without significantly increasing the flow stress. Furthermore, the processing technique also allows the insertion of desired foreign species, such as reduced graphene oxide, in In-Cu for further enhancing a target property, such as electrical conductivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

III-V pentenary semiconductor AlGaInPAs with a direct band gap of up to 2.0 eV has been grown successfully on GaAs substrates by liquid phase epitaxy;(LPE). With the introduction of the energy bowing parameters of quaternaries, the theoretical calculations agree well with the measured PL peak energy data from pentenary samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lattice-resolved, video-rate environmental transmission electron microscopy shows the formation of a liquid Au-Ge layer on sub-30-nm Au catalyst crystals and the transition of this two-phase Au-Ge/Au coexistence to a completely liquid Au-Ge droplet during isothermal digermane exposure at temperatures far below the bulk Au-Ge eutectic temperature. Upon Ge crystal nucleation and subsequent Ge nanowire growth, the catalyst either recrystallizes or remains liquid, apparently stabilized by the Ge supersaturation. We argue that there is a large energy barrier to nucleate diamond-cubic Ge, but not to nucleate the Au-Ge liquid. As a result, the system follows the more kinetically accessible path, forming a liquid even at 240 degrees C, although there is no liquid along the most thermodynamically favorable path below 360 degrees C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental studies have been performed for horizontal two-phase air-water flows at normal and reduced gravity conditions in a square cross-section channel. The experiments at reduced gravity are conducted on board the Russian IL-76 reduced gravity airplane. Four flow patterns, namely bubble, slug, slug-annular transition and annular flows, are observed depending on the liquid and gas superficial velocities at both conditions. Semi-theoretical Weber number model is developed to include the shape influence on the slug-annular transition. It is shown that its prediction is in reasonable agreement with the experimental slug-annular transition under both conditions. For the case of two-phase gas-liquid flow with large value of the Froude number, the drift-flux model can predict well the observed boundary between bubble and slug flows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Mach-Zehnder interferometer with the phase shift device and an image processor has been developed for the study of the kinetics of the crystal growing process. The dissolution and crystallization process of NaClO3 crystal has been investigated. The concentration distributions around a growing and dissolving crystal have been obtained by using phase-shift of four-steps theory for the interpretation of the interferograms. The convection (a plume flow) has been visualized and analyzed in the process of the crystal growth. The experiment demonstrates that the buoyancy convection dominates the growth rate of the crystal growing face on the ground-based experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the process of lysozyme protein crystallization with batch method, the macroscopic flow field of solid/liquid system was observed by particle image velocimetry (PIV). Furthermore, a normal growth rate of (110) face and local flow field around a single protein crystal were obtained by a long work distance microscope. The experimental results showed that the average velocity, the maximal velocity of macroscopic solid/liquid system and the velocity of local flow field around single protein crystal were fluctuant. The effective boundary layer thickness delta(eff), the concentration at the interface Q and the characteristic velocity V were calculated using a convection-diffusion model. The results showed that the growth of lysozyme crystal in this experiment was dominated by interfacial kinetics rather than bulk transport, and the function of buoyancy-driven flow in bulk transport was small, however, the effect of bulk transport in crystal growth had a tendency to increase with the increase of lysozyme concentration. The calculated results, also showed that the order of magnitude of shear force was about 10(-21) N, which was much less than the bond force between the lysozyme molecules. Therefore the shear force induced by buoyancy-driven flows cannot remove the protein molecules from the interface of crystal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contaminant behaviour in soils and fractured rock is very complex, not least because of the heterogeneity of the subsurface environment. For non-aqueous phase liquids (NAPLs), a liquid density contrast and interfacial tension between the contaminant and interstitial fluid adds to the complexity of behaviour, increasing the difficulty of predicting NAPL behaviour in the subsurface. This paper outlines the need for physical model tests that can improve fundamental understanding of NAPL behaviour in the subsurface, enhance risk assessments of NAPL contaminated sites, reduce uncertainty associated with NAPL source remediation and improve current technologies for NAPL plume remediation. Four case histories are presented to illustrate physical modelling approaches that have addressed problems associated with NAPL transport, remediation and source zone characterization. © 2006 Taylor & Francis Group, London.