918 resultados para least squares method
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
In this work we devise two novel algorithms for blind deconvolution based on a family of logarithmic image priors. In contrast to recent approaches, we consider a minimalistic formulation of the blind deconvolution problem where there are only two energy terms: a least-squares term for the data fidelity and an image prior based on a lower-bounded logarithm of the norm of the image gradients. We show that this energy formulation is sufficient to achieve the state of the art in blind deconvolution with a good margin over previous methods. Much of the performance is due to the chosen prior. On the one hand, this prior is very effective in favoring sparsity of the image gradients. On the other hand, this prior is non convex. Therefore, solutions that can deal effectively with local minima of the energy become necessary. We devise two iterative minimization algorithms that at each iteration solve convex problems: one obtained via the primal-dual approach and one via majorization-minimization. While the former is computationally efficient, the latter achieves state-of-the-art performance on a public dataset.
Resumo:
Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.