981 resultados para lattice
Resumo:
We present results for the QCD spectrum and the matrix elements of scalar and axial-vector densities at β=6/g2=5.4, 5.5, 5.6. The lattice update was done using the hybrid Monte Carlo algorithm to include two flavors of dynamical Wilson fermions. We have explored quark masses in the range ms≤mq≤3ms. The results for the spectrum are similar to quenched simulations and mass ratios are consistent with phenomenological heavy-quark models. The results for matrix elements of the scalar density show that the contribution of sea quarks is comparable to that of the valence quarks. This has important implications for the pion-nucleon σ term.
Resumo:
The formation and decomposition of quasicrystalline and crystalline phases in as-rapidly solidified and annealed commercial AISI 2024 aluminum alloy containing 2 wt% Li have been investigated by detailed transmission electron microscopy, including a combination of bright field and dark field imaging, selected area diffraction pattern analysis and energy dispersive X-ray microanalysis. The microstructure of as-melt spun 2024-2Li consists of alpha-Al cells, containing small coherent delta' precipitates, and particles or a continuous network of the icosahedral phase at the cell boundaries. After annealing at 300-degrees-C, the intercellular particles of the icosahedral phase coarsen progressively and assume a more faceted shape; after annealing at 400-degrees-C, particles of the decagonal and crystalline O phases precipitate heterogeneously on preexisting particles of the icosahedral phase; and after annealling at 500-degrees-C, the icosahedral and decagonal phases dissolve completely, and small particles of the crystalline O phase remain together with newly precipitated plates of the T1 phase. The icosahedral phase in melt spun and melt spun/annealed 2024-2Li belongs to the Al6CuLi3 class of icosahedral phases, with a quasilattice constant of 0.51 nm, a stoichiometry of (Al, Si)6(Cu, Mn, Fe) (Li, Mg)3 and an average composition of Al-24.1 at.% Cu-6.4 at.% Mg-1.7 at.% Si-0.3 at.% Mn-0.5 at.% Fe as-melt spun and Al-21.9 at.% Cu-6.3 at.% Mg-1.0 at.% Si-0.5 at.% Fe as-heat-treated. The decagonal phase in melt spun/annealed 2024-2Li belongs to the Al4Mn class of decagonal phases, with a periodicity of 1.23 nm along the 10-fold symmetry axis, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-10.3 at.% Cu-13.8 at.% Mn-2.3 at.% Fe. The crystalline O phase in melt spun/annealed 2024-2Li has an orthorhombic structure with lattice parameters of a = 2.24 nm, b = 2.35 nm and c = 1.23 nm, a stoichiometry of Al3(Cu, Mn, Fe) and an average composition of Al-11.0 at.% Cu-14.8 at.% Mn-3.9 at.% Fe. Detailed analysis of selected area diffraction patterns shows a close similarity between the icosahedral, decagonal and crystalline O phases in melt spun and melt spun/annealed 2024-2Li. In particular, the decagonal phase and crystalline O phases have a similar composition, and exhibit an orientation relationship which can be expressed as: [GRAPHICS] suggesting that the orthorhombic O phase is an approximant structure for the decagonal phase.
Resumo:
X-ray absorption spectra at the oxygen K edge using the total yield technique are reported for YBa2Cu3O6.9 and YBa2Cu2.7Fe0.3O6.9. A comparison of the two spectra reveals that the mobile holes in YBa2Cu3O7-δ are removed and localized on Fe doping. Fe thus enters the lattice primarily in the formally trivalent oxidation state.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A(1) coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of (1.4 x 10(21) cm(-3) and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as similar to 0.24 angstrom. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 10(18) cm(-3), we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
We have analyzed the set of inter and intra base pair parameters for each dinucleotide step in single crystal structures of dodecamers, solved at high and medium resolution and all crystallized in P2(1)2(1)2(1) space group. The objective was to identify whether all the structures which have either the Drew-Dickerson (DD) sequence d[CGCGAATTCGCG] with some base modification or related sequence (non-DD), would display the same sequence dependent structural variability about its palindromic sequence, despite the molecule being bent at one end because of similar crystal lattice packing effect. Most of the local doublet parameters for base pairs steps G2-C3 and G10-C11 positions, symmetrically situated about the lateral twofold, were significantly correlated between themselves. In non-DD sequences, significant correlations between these positional parameters were absent. The different range of local step parameter values at each sequence position contributed to the gross feature of smooth helix axis bending in all structures. The base pair parameters in some of the positions, for medium resolution DD sequence, were quite unlike the high-resolution set and encompassed a higher range of values. Twist and slide are the two main parameters that show wider conformational range for the middle region of non-DD sequence structures in comparison to DD sequence structures. On the contrary, the minor and major groove features bear good resemblance between DD and non-DD sequence crystal structure datasets. The sugar-phosphate backbone torsion angles are similar in all structures, in sharp contrast to base pair parameter variation for high and low resolution DD and non-DD sequence structures, consisting of unusual (epsilon =g(-), xi =t) B-II conformation at the 10(th) position of the dodecamer sequence. Thus examining DD and non-DD sequence structures packed in the same crystal lattice arrangement, we infer that inter and intra base pair parameters are as symmetrically equivalent in its value as the symmetry related step for the palindromic DD sequence about lateral two-fold axis. This feature would lead us to agree with the conclusion that DNA conformation is not substantially affected by end-to-end or lateral inter-molecular interaction due to crystal lattice packing effect. Non-DD sequence structures acquire step parameter values which reflect the altered sequence at each of the dodecamer sequence position in the orthorhombic lattice while showing similar gross features of DD sequence structures
Resumo:
The paper analyses electromagnetic wave propagation through nonlinear photonic crystal beam-splitters. Different lattice configurations of Y-junction beam-splitters are simulated and propagation properties are investigated with introducing nonlinearity with varying the rod size in crystal lattice. It is seen that nonlinear photonic crystal shows a considerable band-gap even at low refractive contrast. The division of power in both arms of beam-splitters can be controlled by varying the nonlinearity.
Resumo:
Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 C for 3 h and the lattice parameters have been evaluated by Rietveld refinement Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method TEM results also confirm the same Raman studies show major peaks which are assigned to F-g and combination of A(g) + E-g modes The PL spectrum shows a series of emission bands at similar to 326-373 nm (UV) 421-485 nm (blue) 529-542 nm (green) and 622 nm (red) The UV blue green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs) (C) 2010 Elsevier B V All rights reserved
Resumo:
The nuclear Overhauser effect equations are solved analytically for a homonuclear group of spins whose sites are periodically arranged, including the special cases where the spins lie at the vertices of a regular polygon and on a one-dimensional lattice. t is shown that, for long correlation times, the equations governing magnetization transfer resemble a diffusion equation. Furthermore the deviation from exact diffusion is quantitatively related to the molecular tumbling correlation time. Equations are derived for the range of magnetization travel subsequent to the perturbation of a single spin in a lattice for both the case of strictly dipolar relaxation and the more general situation where additional T1 mechanisms may be active. The theory given places no restrictions on the delay (or mixing) times, and it includes all the spins in the system. Simulations are presented to confirm the theory.
Resumo:
The present study aims to assess whether the smectite-rich Cochin and Mangalore clays, which were deposited in a marine medium and subsequently uplifted, exhibit consistency limits response typical of expanding lattice or nonexpanding (fixed) lattice-type clays on artificially changing the chemical environment. The chemical and engineering behaviors of Cochin and Mangalore marine clays are also compared with those of the smectite-rich Ariake Bay marine clay from Japan. Although Cochin, Mangalore, and Ariake clays contain comparable amounts of smectite (32-45%), Ariake clay exhibits lower consistency limits and much higher ranges of liquidity indices than the Indian marine clays. The lower consistency limits of the Ariake clay are attributed to the absence of well-developed, long-range, interparticle forces associated with the clay. Also, Ariake clay exhibits a significantly large (48-714 times) decrease in undrained strength on remolding in comparison to Cochin and Mangalore clays (sensitivity ranges between 1 and 4). A preponderance of long-range, interparticle forces reflected in the high consistency limits of Cochin and Mangalore clays (wL range from 75 to 180%) combined with low natural water contents yield low liquidity indices (typically <1) and high, remolded, undrained strengths and are considered to be responsible for the low sensitivity of the Indian marine clays.
Resumo:
The chemical potential of oxygen corresponding to the iron-rutile-ilmenite (IRI) and iron-ilmenite-ulvospinel (IIU) equilibria has been measured employing solid-state galvanic cells,$$Pt, Fe + TiO_2 + FeTiO_3 //(Y_2 O_3 ) ZrO_2 //Fe + FeO, Pt$$ and $${\text{Pt, Fe + FeTiO}}_{\text{3}} {\text{ + Fe}}_{\text{2}} {\text{TiO}}_{\text{4}} {\text{//(Y}}_{\text{2}} {\text{0}}_{\text{3}} {\text{) ZrO}}_{\text{2}} {\text{//Fe + FeO, Pt}}$$ in the temperature range of 875 to 1275 K and 900 to 1373 K, respectively. The cells are written such that the right-hand electrodes are positive. The electromotive force (emf) of both the cells was found to be reversible and to vary linearly with temperature over the entire range of measurement. The chemical potential of oxygen for IRI equilibrium is represented by Δμo2(IRI) = -550,724 - 29.445T + 20.374T InT(±210) J mol−1 (875 <-T<- 1184 K) = -620,260 + 369.593T - 27.716T lnT(±210) J mol−1 (1184 <-T<- 1275 K) and that for IIU equilibrium by Δμo2(IIU) = -501,800 - 49.035T + 20.374T lnT(±210) J mol−1 (900 <-T<- 1184 K) = -571,336 + 350.003T− 27.716T lnT(=−210) J mol-1 (1184 <-T<- 1373 K) The standard Gibbs energy changes for IRI and IIU equilibria have been deduced from the measured oxygen potentials. Since ilmenite contains small amounts of Ti³+ ions, a correction for the activity of FeTiO3 has been incorporated by assuming ideal mixing on each cation sublattice in the FeTiO3-Ti2O3 system. Similarly, the ulvospinel contains some Fe³+ ions and a correction for the activity of Fe2TiO4 has been included by modeling the Fe2TiO4-Fe3O4 system. The third-law analysis of the results obtained for IRI equilibrium gives ΔH 298 0 = -575 (±1.0) kJ mol-1 and for IIU equilibrium yields ΔH 298 0 = -523.7 (±0.7) kJ mol−1}. The present results suggest that Fe2+ and Ti4+ cations mix almost ideally on the octahedral site of spinel lattice in Fe2TiO4, giving rise to a configurational contribution of 2R In 2 (11.5256 J mol-1 K-1) to the entropy of Fe2TiO4.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.
Resumo:
The temperature dependence of 1H spin-lattice relaxation time, T1, and that of the second moment, M2, are analysed in the temperature range 390 K to 77 K. A plot of T1 vs inverse temperature shows three phase transitions at 250 K, 167 K and 111 K. At 167 K, T1 displays a large jump while it shows changes in slope at 250 K and 111 K. In the high temperature phase (> 167 K), the correlated motion of CH3 and NH3 groups is found to cause the relaxation while their uncorrelated motion takes over in the low temperature phases (< 167 K). The unusual T1 behaviour in phase II (250 K-167 K) is ascribed to the small angle torsion of the cation. A constant M2 value of ∼ 9.7 G2, throughout the range of temperature studied, indicates the presence of reorientation of CH3 and NH3 groups.
Resumo:
The intercalation of linear alkylamines (C1-C4) in the two-dimensional (2D) Ising antiferromagnet, FePS3, has been investigated. Intercalation proceeds with a dilation of the interlayer distance. The expansion (approximately 3.8 angstrom) is the same for all four amine molecules, suggesting that they are oriented flat with respect to the layers. From an analysis of the products of deintercalation, it is concluded that the intercalated species are the alkylammonium cations and neutral amine molecules. The intercalated compounds are highly moisture sensitive, as reflected in the chemical nature of the intercalated species. Charge neutrality of the lattice after intercalation is preserved by the loss of Fe2+ ions from the lattice. These Fe2+ ions are further oxidized to form superparamagnetic Fe2O3 clusters, as confirmed by Mossbauer spectra and magnetic measurements. This was further corroborated by in situ EPR studies. The Fe-57 Mossbauer spectra of the intercalated compounds showed evidence for two species other than Fe2O3. On the basis of the observed isomer shifts and quadrupole splittings, they have been assigned to Fe2+ in an environment similar to that in FePS3 and in a distorted FePS3 environment. The temperature and field dependence of the magnetic susceptibility of single crystals of the amine-intercalated FePS3 have been measured. Their magnetic behavior shows many of the features expected of a 2D Ising antiferromagnet with random defects, Fe1-xPS3, in agreement with the mechanism of intercalation.