1000 resultados para laser scannig
Resumo:
A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.
Resumo:
A novel Littman-Metcalf external cavity laser diode array with two feedback mirrors is introduced. The line-width broadening effect caused by smile can be reduced by the novel external cavity. At the drive current of 16A, the line-width is narrowed to 0.1nm from free-running width of 1.6nm with output efficiency of 84%.
Resumo:
By employing a uniformly compact side-pumping system, a high-energy electro-optical Q-switched Nd:YAG ceramic laser has been demonstrated. With 420 W quasi-cw laser-diode-array pumping at 808 ran and a 100 Hz modulating repetition rate, 50 mJ output energy at 1064 nm was obtained with 10 ns pulse width, 5 W average output power, and 5 MW peak power. Its corresponding slope efficiency was 29.8%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output energy could be expected. Laser parameters between ceramic and single-crystal Nd:YAG lasers have been compared, and pulse characteristics of Nd:YAG ceramic with different repetition rate have been investigated in detail. The still-evolving Nd:YAG ceramics are potential super excellent media for high-energy laser applications. (C) 2007 Optical Society of America.
Resumo:
A novel laser resonator for compensating depolarization loss that is due to thermally induced birefringence in active rod is reported. As this new structure being applied to an electro-optic Q-switched LIDA side-pumped Nd:YAG laser operating at a repetition rate of 1000 Hz, substantial reduction in depolarization loss has been observed, the output pulse energy is improved about 56% from that of a traditional resonator without compensation structure. With incident pump energy of 450 mJ per pulse, linearly polarized output energy of 30 mJ per pulse is achieved, the pulse duration is less than 15 ns, and the peak power of pulse is about 2 MW. The extinction ratio of laser beam is better than 10:1, and the beam divergence is 1.3 mrad with beam diameter of around 2.5 mm. (c) 2006 Published by Elsevier B.V.
Resumo:
The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M-2 is analyzed. An equivalent factor M-F(2) for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M-2/M-F(2) by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M-2 to M-F(2) but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A novel off-axis external cavity is designed for laser diode array to improve the beam quality. In this external cavity, a circle aperture with variable size is used as a spatial filter. The diameter of aperture is optimized to 1.2mm and the off-axis angle of external cavity is optimized at 2.6 deg. In the optimal case, the beam parameter product (BPP) of laser diode array is reduced to 121 mm. mrad from 1050 mm. mrad with external cavity optical efficiency of 81%. (C) 2007 Optical Society of America.
Resumo:
We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of similar to 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of similar to 75%. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A novel acousto-optic switch operation by a simple laser-diode pumped acousto-optic, Q-switched, ytterbium-doped, double-clad fiber laser is reported. Stable compressed Q-switched sub-40 ns pulses with a beam quality factor (M-2 = 2) are achieved at the repetition rate of 1-50 kHz. Q-switched pulses of similar to 20 mu J pulse energy and 35 as pulse width are obtained at the repetition rate of 50 kHz. Finally, a reasonable explanation of the novel Q-switched operation is presented. (c) 2007 Optical Society of America.
Resumo:
Phase locking of a two-dimensional fiber laser array is experimentally demonstrated by using a self-imaging resonator and a spatial filter. The stable beam profiles of in-phase mode and out-of-phase mode are observed by controlling the position of spatial filter. The phase locking fiber array with in-phase mode has produced 26 W coherent output. An antisymmetric eigenmode is also observed in our experiments. The phase locking is not sensitive to power variations among the pump beams and the configuration has the ability to repair a missing element. (C) 2008 American Institute of Physics.
Resumo:
A simple actively Q-switched double-clad fiber laser combining an amplifying cavity is reported by using a dynamic acoustooptic Q-switching as a beam splitter. Sub-100-ns. pulses independence of the repetition rate of acoustooptic modulator are almost changeless with repetition rate varied from 50 kHz to 1.5 MHz. With 4.5-W absorbed power, 9.4-W peak-power pulses at 1.5-MHz repetition rate with 75-ns pulse duration are generated.
Resumo:
For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting. (C) 2008 Optical Society of America
Resumo:
Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A high repetition rate ytterbium-doped double-clad (YDDC) fiber laser with amplifying effect is described by using acousto-optic modulator. The characteristic of Q-switched pulses are studied with accurate control of opening gate time of modulator. The stable Q-switched pulses with tens of nanoseconds width can be observed at high repetition rate varied from 50 kHz to 500 kHz using this laser. The stable operation area of the Q-switched fiber laser is discussed and the analysis results agree well with that of the experiment. (c) 2007 Elsevier B.V. All rights reserved.