936 resultados para interaction with text
Resumo:
Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex.
Resumo:
During protein synthesis, the two elongation factors Tu and G alternately bind to the 50S ribosomal subunit at a site of which the protein L7/L12 is an essential component. L7/L12 is present in each 50S subunit in four copies organized as two dimers. Each dimer consists of distinct domains: a single N-terminal (“tail”) domain that is responsible for both dimerization and binding to the ribosome via interaction with the protein L10 and two independent globular C-terminal domains (“heads”) that are required for binding of elongation factors to ribosomes. The two heads are connected by flexible hinge sequences to the N-terminal domain. Important questions concerning the mechanism by which L7/L12 interacts with elongation factors are posed by us in response to the presence of two dimers, two heads per dimer, and their dynamic, mobile properties. In an attempt to answer these questions, we constructed a single-headed dimer of L7/L12 by using recombinant DNA techniques and chemical cross-linking. This chimeric molecule was added to inactive core particles lacking wild-type L7/L12 and shown to restore activity to a level approaching that of wild-type two-headed L7/L12.
Resumo:
Interaction of the αβ T cell receptor (TCR) with major histocompatibility (MHC) molecules occupied with any of a large collection of peptides derived from self proteins is a critical step in driving T cell “positive” selection in the thymus. Interaction with this same pool of self-peptide/MHC ligands deletes T cells with potential self-reactivity. To examine how T cells survive both of these processes to form a self-tolerant mature repertoire, mice were constructed whose entire class II MHC IEk specific repertoire was positively selected on a single peptide covalently attached to the IEk molecule. In these mice T cells were identified that could respond to a variant of the positively selecting peptide bound to IEk. The affinities of the TCRs from these T cells for the positively selecting ligand were extremely low and at least 10-fold less than those for the activating ligand. These results support the theory that positive selection is driven by TCR affinities lower than those involved in T cell deletion or activation and that, if present at high concentration, even very low affinity ligands can positively select.
Resumo:
ALL1, the human homologue of Drosophila trithorax, is directly involved in human acute leukemias associated with abnormalities at 11q23. Using the differential display method, we isolated a gene that is down-regulated in All1 double-knockout mouse embryonic stem (ES) cells. The gene, designated ARP1 (also termed RIEG, Ptx2, or Otlx2), is a member of a family of homeotic genes containing a short motif shared with several homeobox genes. Using a bacterially synthesized All1 polypeptide encompassing the AT-hook motifs, we identified a 0.5-kb ARP1 DNA fragment that preferentially bound to the polypeptide. Within this DNA, a region of ≈100 bp was protected by the polypeptide from digestion with ExoIII and DNase I. Whole-mount in situ hybridization to early mouse embryos of 9.5–10.5 days indicated a complex pattern of Arp1 expression spatially overlapping with the expression of All1. Although the ARP1 gene is expressed strongly in bone marrow cells, no transcripts were detected in six leukemia cell lines with 11q23 translocations. These results suggest that ARP1 is up-regulated by the All1 protein, possibly through direct interaction with an upstream DNA sequence of the former. The results are also consistent with the suggestion that ALL1 chimeric proteins resulting from 11q23 abnormalities act in a dominant negative fashion.
Resumo:
β subunits of voltage-gated Ca2+ channels are encoded in four genes and display additional molecular diversity because of alternative splicing. At the functional level, all forms are very similar except for β2a, which differs in that it does not support prepulse facilitation of α1C Ca2+ channels, inhibits voltage-induced inactivation of neuronal α1E Ca2+ channels, and is more effective in blocking inhibition of α1E channels by G protein-coupled receptors. We show that the distinguishing properties of β2a, rather than interaction with a distinct site of α1, are because of the recently described palmitoylation of cysteines in positions three and four, which also occurs in the Xenopus oocyte. Essentially, all of the distinguishing features of β2a were lost in a mutant that could not be palmitoylated [β2a(Cys3,4Ser)]. Because protein palmitoylation is a dynamic process, these findings point to the possibility that regulation of palmitoylation may contribute to activity-dependent neuronal and synaptic plasticity. Evidence is presented that there may exist as many as three β2 splice variants differing only in their N-termini.
Resumo:
ClpA, a member of the Clp/Hsp100 family of ATPases, is a molecular chaperone and, in combination with a proteolytic component ClpP, participates in ATP-dependent proteolysis. We investigated the role of ClpA in protein degradation by ClpAP by dissociating the reaction into several discrete steps. In the assembly step, ClpA–ClpP–substrate complexes assemble either by ClpA–substrate complexes interacting with ClpP or by ClpA–ClpP complexes interacting with substrate; ClpP in the absence of ClpA is unable to bind substrates. Assembly requires ATP binding but not hydrolysis. We discovered that ClpA translocates substrates from their binding sites on ClpA to ClpP. The translocation step specifically requires ATP; nonhydrolyzable ATP analogs are ineffective. Only proteins that are degraded by ClpAP are translocated. Characterization of the degradation step showed that substrates can be degraded in a single round of ClpA–ClpP–substrate binding followed by ATP hydrolysis. The products generated are indistinguishable from steady-state products. Taken together, our results suggest that ClpA, through its interaction with both the substrate and ClpP, acts as a gatekeeper, actively translocating specific substrates into the proteolytic chamber of ClpP where degradation occurs. As multicomponent ATP-dependent proteases are widespread in nature and share structural similarities, these findings may provide a general mechanism for regulation of substrate import into the proteolytic chamber.
Resumo:
Although the catalytic (C) subunit of cAMP-dependent protein kinase is N-myristylated, it is a soluble protein, and no physiological role has been identified for its myristyl moiety. To determine whether the interaction of the two regulatory (R) subunit isoforms (RI and RII) with the N-myristylated C subunit affects its ability to target membranes, the effect of N-myristylation and the RI and RII subunit isoforms on C subunit binding to phosphatidylcholine/phosphatidylserine liposomes was examined. Only the combination of N-myristylation and RII subunit interaction produced a dramatic increase in the rate of liposomal binding. To assess whether the RII subunit also increased the conformational flexibility of the C subunit N terminus, the effect of N-myristylation and the RI and RII subunits on the rotational freedom of the C subunit N terminus was measured. Specifically, fluorescein maleimide was conjugated to Cys-16 in the N-terminal domain of a K16C mutant of the C subunit, and the time-resolved emission anisotropy was determined. The interaction of the RII subunit, but not the RI subunit, significantly increased the backbone flexibility around the site of mutation and labeling, strongly suggesting that RII subunit binding to the myristylated C subunit induced a unique conformation of the C subunit that is associated with an increase in both the N-terminal flexibility and the exposure of the N-myristate. RII subunit thus appears to serve as an intermolecular switch that disrupts of the link between the N-terminal and core catalytic domains of the C subunit to expose the N-myristate and poise the holoenzyme for interaction with membranes.
Resumo:
Surmises of how myosin subfragment 1 (S1) interacts with actin filaments in muscle contraction rest upon knowing the relative arrangement of the two proteins. Although there exist crystallographic structures for both S1 and actin, as well as electron microscopy data for the acto–S1 complex (AS1), modeling of this arrangement has so far only been done “by eye.” Here we report fitted AS1 structures obtained using a quantitative method that is both more objective and makes more complete use of the data. Using undistorted crystallographic results, the best-fit AS1 structure shows significant differences from that obtained by visual fitting. The best fit is produced using the F-actin model of Holmes et al. [Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature (London) 347, 44–49]. S1 residues at the AS1 interface are now found at a higher radius as well as being translated axially and rotated azimuthally. Fits using S1 plus loops missing from the crystal structure were achieved using a homology search method to predict loop structures. These improved fits favor an arrangement in which the loop at the 50- to 20-kDa domain junction of S1 is located near the N terminus of actin. Rigid-body movements of the lower 50-kDa domain, which further improve the fit, produce closure of the large 50-kDa domain cleft and bring conserved residues in the lower 50-kDa domain into an apparently appropriate orientation for close interaction with actin. This finding supports the idea that binding of ATP to AS1 at the end of the ATPase cycle disrupts the actin binding site by changing the conformation of the 50-kDa cleft of S1.
Resumo:
Pairs of transcriptional activators in prokaryotes have been shown to activate transcription synergistically from promoters with two activator binding sites. In some cases, such synergistic effects result from cooperative binding, but in other cases each DNA-bound activator plays a direct role in the activation process by interacting simultaneously with separate surfaces of RNA polymerase. In such cases, each DNA-bound activator must possess a functional activating region, the surface that mediates the interaction with RNA polymerase. When transcriptional activation depends on two or more identical activators, it is not straightforward to test the requirement of each activator for a functional activating region. Here we describe a method for directing a mutationally altered activator to either one or the other binding site, and we demonstrate the use of this method to examine the mechanism of transcriptional activator synergy by the Escherichia coli cyclic AMP receptor protein (CRP) working at an artificial promoter bearing two CRP-binding sites.
Resumo:
Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.
Resumo:
Recent studies indicate that CTLA-4 interaction with B7 ligands transduces an inhibitory signal to T lymphocytes. Mice homozygous for a null mutation in CTLA-4 have provided the most dramatic example of the functional importance of CTLA-4 in vivo. These animals develop a fatal lymphoproliferative disorder and were reported to have an increase in CD4+ and CD8+ thymocytes and CD4−CD8− thymocytes, and a decrease in CD4+CD8+ thymocytes. Based on these observations, it was proposed that CTLA-4 is necessary for normal thymocyte development. In this study, CTLA-4-deficient mice carrying an insertional mutation into exon 3 of the ctla-4 gene were generated. Although these mice display a lymphoproliferative disorder similar to previous reports, there was no alteration in the thymocyte profiles when the parathymic lymph nodes were excluded from the thymi. Further, thymocyte development was normal throughout ontogeny and in neonates, and there was no increase in thymocyte production. Finally, T cell antigen receptor signaling, as assessed by proximal and distal events, was not altered in thymocytes from CTLA-4−/− animals. Collectively, these results clearly demonstrate that the abnormal T cell expansion in the CTLA-4-deficient mice is not due to altered thymocyte development and suggest that the apparent altered thymic phenotype previously described was due to the inclusion of parathymic lymph nodes and, in visibly ill animals, to the infiltration of the thymus by activated peripheral T cells. Thus it appears that CTLA-4 is primarily involved in the regulation of peripheral T cell activation.
Resumo:
The ATP-sensitive potassium channel (K-ATP channel) plays a key role in insulin secretion from pancreatic β-cells. It is closed by glucose metabolism, which stimulates secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and MgADP concentration, which inhibit and potentiate channel activity, respectively. The β-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. The site at which ATP mediates channel inhibition lies on Kir6.2, while the potentiatory action of MgADP involves the nucleotide-binding domains of SUR1. K-ATP channels are also activated by MgGTP and MgGDP. Furthermore, both nucleotides support the stimulatory actions of diazoxide. It is not known, however, whether guanine nucleotides mediate their effects by direct interaction with one or more of the K-ATP channel subunits or indirectly via a GTP-binding protein. We used a truncated form of Kir6.2, which expresses independently of SUR1, to show that GTP blocks K-ATP currents by interaction with Kir6.2 and that the potentiatory effects of GTP are endowed by SUR1. We also showed that mutation of the lysine residue in the Walker A motif of either the first (K719A) or second (K1384M) nucleotide-binding domain of SUR1 abolished both the potentiatory effects of GTP and GDP on K-ATP currents and their ability to support stimulation by diazoxide. This argues that the stimulatory effects of guanine nucleotides require the presence of both Walker A lysines.
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
CP12 is a small nuclear encoded chloroplast protein of higher plants, which was recently shown to interact with NAD(P)H–glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13), one of the key enzymes of the reductive pentosephosphate cycle (Calvin cycle). Screening of a pea cDNA library in the yeast two-hybrid system for proteins that interact with CP12, led to the identification of a second member of the Calvin cycle, phosphoribulokinase (PRK; EC 2.7.1.19), as a further specific binding partner for CP12. The exchange of cysteines for serines in CP12 demonstrate that interaction with PRK occurs at the N-terminal peptide loop of CP12. Size exclusion chromatography and immunoprecipitation assays reveal the existence of a stable 600-kDa PRK/CP12/GAPDH complex in the stroma of higher plant chloroplasts. Its stoichiometry is proposed to be of two N-terminally dimerized CP12 molecules, each carrying one PRK dimer on its N terminus and one A2B2 complex of GAPDH subunits on the C-terminal peptide loop. Incubation of the complex with NADP or NADPH, in contrast to NAD or NADH, causes its dissociation. Assays with the stromal 600-kDa fractions in the presence of the four different nicotinamide-adenine dinucleotides indicate that PRK activity depends on complex dissociation and might be further regulated by the accessible ratio of NADP/NADPH. From these results, we conclude that light regulation of the Calvin cycle in higher plants is not only via reductive activation of different proteins by the well-established ferredoxin/thioredoxin system, but in addition, by reversible dissociation of the PRK/CP12/GAPDH complex, mediated by NADP(H).
Resumo:
RNA templates of 33 nucleotides containing the brome mosaic virus (BMV) core subgenomic promoter were used to determine the promoter elements recognized by the BMV RNA-dependent RNA polymerase (RdRp) to initiate RNA synthesis. Nucleotides at positions −17, −14, −13, and −11 relative to the subgenomic initiation site must be maintained for interaction with the RdRp. Changes to every other nucleotide at these four positions allow predictions for the base-specific functional groups required for RdRp recognition. RdRp contact of the nucleotide at position −17 was suggested with a template competition assay. Comparison of the BMV subgenomic promoter to those from other plant and animal alphaviruses shows a remarkable degree of conservation of the nucleotides required for BMV subgenomic RNA synthesis. We show that the RdRp of the plant-infecting BMV is capable of accurately, albeit inefficiently, initiating RNA synthesis from the subgenomic promoter of the animal-infecting Semliki Forest virus. The sequence-specific recognition of RNA by the BMV RdRp is analogous to the recognition of DNA promoters by DNA-dependent RNA polymerases.