974 resultados para insulina basal
Resumo:
Cells from patients with the genetic disorder ataxia-telangiectasia (A-T) are hypersensitive to ionizing radiation and radiomimetic agents, both of which generate reactive oxygen species capable of causing oxidative damage to DNA and other macromolecules. We describe in A-T cells constitutive activation of pathways that normally respond to genotoxic stress, Basal levels of p53 and p21(WAF1/CIP1), phosphorylation on serine 15 of p53, and the Tyr15-phosphorylated form of cdc2 are chronically elevated in these cells. Treatment of A-T cells with the antioxidant alpha -lipoic acid significantly reduced the levels of these proteins, pointing to the involvement of reactive oxygen species in their chronic activation. These findings suggest that the absence of functional ATM results in a mild but continuous state of oxidative stress, which could account for several features of the pleiotropic phenotype of A-T.
Resumo:
Sunscreens penetrate human epidermis and modify the biology of proliferating cells. This study addressed the question whether the UV response of cultured human cells is affected by direct treatment with nontoxic levels of sunscreens. Cell survival following exposure to UVC or unfiltered UVB was not altered by preincubation with 25 μg/mL of octyl p-dimethylaminobenzoate (o-PABA), 2-ethylhexyl p-methoxycinnamate (EHMC) or oxybenzone. However, UVA or UVB filtered to reproduce the solar UV spectrum penetrating to the basal layer of the epidermis, highly sensitized cells to killing by o-PABA but not by its hydrolysis product, 4-dimethylaminobenzoic acid. Sensitization was found in all cell types tested, except normal keratinocytes, and could be prevented by certain antioxidants particularly pyruvate and the hydroxyl radical scavenger mannitol. o-PABA and EHMC applied without UV reduced the adherence of cells. The results indicate that sunscreens may increase cell mobility and the combination of o-PABA with solar UV may selectively damage melanocytes in the skin.
Resumo:
The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO240) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO240 is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO, Although VNO240 was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5, This delayed appearance in the accessory olfactory bulb suggests that VNO240 is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb, During the first 2 postnatal weeks, the population of neurones expressing VNO240 spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM, To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO, These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis, Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO240 and NOC-1 increases during postnatal maturation. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The E7 oncoprotein of human papillomavirus 16 (HPV16) transforms basal and suprabasal cervical epithelial cells and is a tumor-specific antigen in cervical carcinoma, to which immunotherapeutic strategies aimed at cytotoxic T-lymphocyte (CTL) induction are currently directed. By quantifying major histocompatibility complex class I tetramer-binding T cells and CTL in mice expressing an HPV16 E7 transgene from the keratin-l l (K14) promoter in basal and suprabasal keratinocytes and in thymic cortical epithelium, we show that antigen responsiveness of both E7- and non-E7-specific CD8(+) cells is down-regulation compared to non-E7 transgenic control mice. We show that the effect is specific for E7, and not another transgene, expressed from the K14 promoter, Down-regulation did not involve deletion of CD8(+) T cells of high affinity or high avidity, and T-cell receptor (TCR) VP-chain usage and TCR receptor density were similar in antigen-responsive cells from E7 transgenic and non-E7 transgenic mice. These data indicate that E7 expressed chronically from the K14 promoter nonspecifically down-regulates CD8+ T-cell responses. The in vitro data correlated with the failure of immunized E7 transgenic mice to control the growth of an E7-expressing tumor challenge, We have previously shown that E7-directed CTL down-regulation correlates with E7 expression in peripheral but not thymic epithelium (T, Dean et al., J, Virol. 73:6166-6170, 1999), The findings have implications for the immunological consequences of E7-expressing tumor development and E7-directed immunization strategies. Generically, the findings illustrate a T-cell immunomodulatory function for a virally encoded human oncoprotein.
Resumo:
This paper reviews current research and contemporary theories of subcortical participation in the motor control of speech production and language processing. As a necessary precursor to the discussion of the functional roles of the basal ganglia and thalamus, the neuroanatomy of the basal ganglial-thalamocortical circuitry is described. Contemporary models of hypokinetic and hyperkinetic movement disorders based on recent neuroanatomical descriptions of the multi-segmented circuits that characterise basal ganglion anatomy are described. Reported effects of surgically induced lesions in the globus pallidus and thalamus on speech production are reviewed. In addition, contemporary models proposed to explain the possible contribution of various subcortical structures to language processing are described and discussed in the context of evidence gained from observation of the effects of circumscribed surgically induced lesions in the basal ganglia and thalamus on language function. The potential of studies based on examination of the speech/language outcomes of patients undergoing pallidotomy and thalamotomy to further inform the debate relating to the role of subcortical structures in speech motor control and language processing is highlighted. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
The effects of five neuropeptides (CGRP, SOM, SP, NPY, VIP), L-NAME (nitric oxide synthase inhibitor), and adrenaline on the contractile tone of the aortic anastomosis in the estuarine crocodile, Crocodylus porosus, were investigated. None of the neuropeptides, which had previously been found to be present in the aortic anastomosis, had any direct effect on the tension developed by ring preparations. L-NAME itself significantly increased the basal tone of the vascular ring preparations, suggesting a tonic release of nitric oxide in the preparation. Adrenaline produced concentration-dependent vasoconstrictions that were counteracted by profound reflex vasodilatations that were susceptible to blockade by L-NAME. Immunohistochemistry revealed the presence of nitric oxide synthase and tyrosine hydroxylase-containing (indicating the presence of a adrenergic innervation) nerve fibres in the adventitia and adventitio-medial border of the aortic anastomosis. These data demonstrate opposing actions of adrenaline and nitric oxide on the vascular smooth muscle in the anastomosis of the C. porosus. The morphology of the anastomosis, with the extremely thick muscular vessel wall, suggests a sphincter-like function for this vessel that could be controlled mainly by adrenergic and nitrergic mechanisms, (C) 2001 Academic Press.
Resumo:
Objective: We examined the relationship between self-reported calcium (Cal intake and bone mineral content (BMC) in children and adolescents. We hypothesized that an expression of Ca adjusted for energy intake (El), i.e., Ca density, would be a better predictor of BMC than unadjusted Ca because of underreporting of EI. Methods: Data were obtained on dietary intakes (repeated 24-hour recalls) and BMC (by DEXA) in a cross-section of 227 children aged 8 to 17 years. Bivariate and multivariate analyses were used to examine die relationship between Ca, Ca density, and the dependent variables total body BMC and lumbar spine BMC. Covariates included were height, weight, bone area, maturity age, activity score and El. Results: Reported El compared to estimated basal metabolic rate suggested underreporting of El. Total body and lumbar spine BMC were significantly associated with El, but not Ca or Ca density, in bivariate analyses. After controlling for size and maturity, multiple linear regression analysis revealed unadjusted Ca to be a predictor of BMC in males in the total body (p = 0.08) and lumbar spine (p = 0.01). Unadjusted Ca was not a predictor of BMC at either site in females. Ca density was not a better predictor of BMC at either site in males or females. Conclusions: The relationship observed in male adolescents in this study between Ca intake and BMC is similar to that seen in clinical trials. Ca density did not enable us to see a relationship between Ca intake and BMC in females, which may reflect systematic reporting errors or that diet is not a limiting factor in this group of healthy adolescents.
Resumo:
Utilizing an in vitro laminitis explant model, we have investigated how bacterial broth cultures and purified bacterial proteases activate matrix metalloproteinases (MMPs) and alter structural integrity of cultured equine lamellar hoof explants. Four Gram-positive Streptococcus spp. and three Gram-negative bacteria all induced a dose-dependent activation of MMP-2 and MMP-9 and caused lamellar explants to separate. MMP activation was deemed to have occurred if a specific MMP inhibitor, batimastat, blocked MMP activity and prevented lamellar separation. Thermolysin and streptococcal pyrogenic exotoxin B (SpeB) both separated explants dose-dependently but only thermolysin was inhibitable by batimastat or induced MMP activation equivalent to that seen with bacterial broths. Additionally, thermolysin and broth MMP activation appeared to be cell dependent as MMP activation did not occur in isolation. These results suggest the rapid increase in streptococcal species in the caecum and colon observed in parallel with carbohydrate induced equine laminitis may directly cause laminitis via production of exotoxin(s) capable of activating resident MMPs within the lamellar structure. Once activated, these MMPs can degrade key components of the basement membrane (BM) hemidesmosome complex, ultimately separating the BM from the epidermal basal cells resulting in the characteristic laminitis histopathology of hoof lamellae. While many different causative agents have been evaluated in the past, the results of this study provide a unifying aetiological mechanism for the development of carbohydrate induced equine laminitis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Smooth muscle cells (SMC) exhibit a functional plasticity, modulating from the mature phenotype in which the primary function is contraction, to a less differentiated state with increased capacities for motility, protein synthesis, and proliferation. The present study determined, using Western analysis, double-label immunofluorescence and confocal microscopy, whether changes in phenotypic expression of rabbit aortic SMC in culture could be correlated with alterations in expression and distribution of structural proteins. Contractile state SMC (days 1 and 3 of primary culture) showed distinct sorting of proteins into subcellular domains, consistent with the theory that the SMC structural machinery is compartmentalised within the cell. Proteins specialised for contraction (alpha -SM actin, SM-MHC, and calponin) were highly expressed in these cells and concentrated in the upper central region of the cell. Vimentin was confined to the body of the cell, providing support for the contractile apparatus but not co-localising with it. In line with its role in cell attachment and motility, beta -NM actin was localised to the cell periphery and basal cortex. The dense body protein alpha -actinin was concentrated at the cell periphery, possibly stabilising both contractile and motile apparatus. Vinculin-containing focal adhesions were well developed, indicating the cells' strong adhesion to substrate. In synthetic state SMC (passages 2-3 of culture), there was decreased expression of contractile and adhesion (vinculin) proteins with a concomitant increase in cytoskeletal proteins (beta -non-muscle [NM] actin and vimentin). These quantitative changes in structural proteins were associated with dramatic chan-es in their distribution. The distinct compartmentalisation of structural proteins observed in contractile state SMC was no longer obvious, with proteins more evenly distributed throughout die cytoplasm to accommodate altered cell function. Thus, SMC phenotypic modulation involves not only quantitative changes in contractile and cytoskeletal proteins, but also reorganisation of these proteins. Since the cytoskeleton acts as a spatial regulator of intracellular signalling, reorganisation of the cytoskeleton may lead to realignment of signalling molecules, which, in turn, may mediate the changes in function associated with SMC phenotypic modulation. (C) 2001 Wiley-Liss, Inc.
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
The purpose of this study, was to develop a newborn piglet model of hypoxia/ischaemia which would better emulate the clinical situation in the asphyxiated human neonate and produce a consistent degree of histopathological injury following the insult. One-day-old piglets (n = 18) were anaesthetised with a mixture of propofol (10 mg/kg/h) and alfentinal (5,5.5 mug/kg/h) i.v. The piglets were intubated and ventilated. Physiological variables were monitored continuously. Hypoxia was induced by decreasing the inspired oxygen (FiO(2)) to 3-4% and adjusting FiO(2) to maintain the cerebral function monitor peak amplitude at less than or equal to5 muV. The duration of the mild insult was 20, min while the severe insult was 30 min which included 10 min where the blood pressure was allowed to fall below 70% of baseline. Control piglets (n=4 of 18) were subjected to the same protocol except for the hypoxic/ischaemic insult. The piglets were allowed to recover from anaesthesia then euthanased 72 It after the insult. The brains were perfusion-fixed, removed and embedded in paraffin. Coronal sections were stained by haematoxylin/eosin. A blinded observer examined the frontal and parietal cortex, hippocampus, basal ganglia, thalamus and cerebellum for the degree of damage. The total mean histology score for the five areas of the brain for the severe insult was 15.6 +/-4.4 (mean +/-S.D., n=7), whereas no damage was seen in either the mild insult (n=4) or control groups. This 'severe damage' model produces a consistent level of damage and will prove useful for examining potential neuroprotective therapies in the neonatal brain. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
It has long been known from work in both Drosophila and vertebrate systems that the hedgehog signalling pathway is pivotal to embryonic development, but the past 5 years has seen an increase in our understanding of how members of this pathway are crucial to the processes of tumorigenesis. This important link was firmly established with the discovery that mutations in the gene encoding the hedgehog receptor molecule patched are responsible for both familial and sporadic forms of basal cell carcinoma (BCC), as well as a number of other tumour types. It is now known that a number of key members of the hedgehog cascade are involved in tumorigenesis, and dysregulation of this pathway appears to be a key element in the aetiology of a range of tumours. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The fx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell, Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multivesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of fx mice.
Resumo:
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 mum nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 mum nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 mum) significantly inhibited basal and insulin-stimulated glucose uptake in adi. pocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 muM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 muM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degreesC. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.
Resumo:
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.