985 resultados para hillslope hydrology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Integrated Catchments model of Phosphorus dynamics (INCA-P) was applied to the River Lugg to determine the key factors controlling delivery of phosphorus to the main channel and to quantify the relative contribution of diffuse and point sources to the in-stream phosphorus (P) load under varying hydrological conditions. The model is able to simulate the seasonal variations and inter-annual variations in the in-stream total-phosphorus concentrations. However, difficulties in simulating diffuse inputs arise due to equifinality in the model structure and parameters. The River Lugg is split into upper and lower reaches. The upper reaches are dominated by grassland and woodland, so the patterns in the stream-water total-phosphorus concentrations are typical of diffuse source inputs; application of the model leads to estimates of the relative contribution to the in-stream P load from diffuse and point sources as 9:1. In the lower reaches, which are more intensively cultivated and urbanised, the stream-water total-phosphorus concentration dynamics are influenced more by point-sources; the simulated relative diffuse/point contribution to the in-stream P load is 1: 1. The model set-up and simulations are used to identify the key source-areas of P in the catchment, the P contribution of the Lugg to the River Wye during years with contrasting precipitation inputs, and the uptake and release of P from within-reach sediment. In addition, model scenarios are run to identify the impacts of likely P reductions at sewage treatment works on the in-stream soluble-reactive P concentrations and the suitability of this as a management option is assessed for reducing eutrophication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the Lambourn and Pang river-systems to integrate current process-knowledge and available-data to test two hypotheses and thereby determine the key factors and processes controlling the movement of nitrate at the catchment-scale in lowland, permeable river-systems: (i) that the in-stream nitrate concentrations were controlled by two end-members only: groundwater and soil-water, and (ii) that the groundwater was the key store of nitrate in these river-systems. Neither hypothesis was proved true or false. Due to equifinality in the model structure and parameters at least two alternative models provided viable explanations for the observed in-stream nitrate concentrations. One model demonstrated that the seasonal-pattern in the stream-water nitrate concentrations was controlled mainly by the mixing of ground- and soil-water inputs. An alternative model demonstrated that in-stream processes were important. It is hoped further measurements of nitrate concentrations made in the catchment soil- and ground-water and in-stream may constrain the model and help determine the correct structure, though other recent studies suggest that these data may serve only to highlight the heterogeneity of the system. Thus when making model-based assessments and forecasts it is recommend that all possible models are used, and the range of forecasts compared. In this study both models suggest that cereal production contributed approximately 50% the simulated in-stream nitrate toad in the two catchments, and the point-source contribution to the in-stream load was minimal. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution closes this special issue of Hydrology and Earth System Sciences concerning the assessment of nitrogen dynamics in catchments across Europe within a semi-distributed Integrated Nitrogen model for multiple source assessment in Catchments (INCA). New developments in the understanding of the factors and processes determining the concentrations and loads of nitrogen are outlined. The ability of the INCA model to simulate the hydrological and nitrogen dynamics of different European ecosystems is assessed and the results of the first scenario analyses investigating the impacts of deposition, climatic and land-use change on the nitrogen dynamics are summarised. Consideration is given as to how well the model has performed as a generic too] for describing the nitrogen dynamics of European ecosystems across Arctic, Maritime. Continental and Mediterranean climates, its role in new research initiatives and future research requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the results and conclusions of the INCA (Integrated Nitrogen Model for European CAtchments) project and sets the findings in the context of the ELOISE (European Land-Ocean Interaction Studies) programme. The INCA project was concerned with the development of a generic model of the major factors and processes controlling nitrogen dynamics in European river systems, thereby providing a tool (a) to aid the scientific understanding of nitrogen transport and retention in catchments and (b) for river-basin management and policy-making. The findings of the study highlight the heterogeneity of the factors and processes controlling nitrogen dynamics in freshwater systems. Nonetheless, the INCA model was able to simulate the in-stream nitrogen concentrations and fluxes observed at annual and seasonal timescales in Arctic, Continental and Maritime-Temperate regimes. This result suggests that the data requirements and structural complexity of the INCA model are appropriate to simulate nitrogen fluxes across a wide range of European freshwater environments. This is a major requirement for the production of coupled fiver-estuary-coastal shelf models for the management of our aquatic environment. With regard to river-basin management, to achieve an efficient reduction in nutrient fluxes from the land to the estuarine and coastal zone, the model simulations suggest that management options must be adaptable to the prevailing environmental and socio-economic factors in individual catchments: 'Blanket approaches' to environmental policy appear too simple. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impacts of afforestation at Plynlimon in the Severn catchment, mid-Wales. and in the Bedford Ouse catchment in south-east England are evaluated using the INCA model to simulate Nitrogen (N) fluxes and concentrations. The INCA model represents the key hydrological and N processes operating in catchments and simulates the daily dynamic behaviour as well as the annual fluxes. INCA has been applied to five years of data front the Hafren and Hore headwater sub-catchments (6.8 km(2) area in total) of the River Severn at Plytilimon and the model was calibrated and validated against field data. Simulation of afforestation is achieved by altering the uptake rate parameters in the model. INCA simulates the daily N behaviour in the catchments with good accuracy as well as reconstructing the annual budgets for N release following clearfelling a four-fold increase in N fluxes was followed by a slow recovery after re-afforestation. For comparison, INCA has been applied to the large (8380 km(2)) Bedford Ouse catchment to investigate the impact of replacing 20% arable land with forestry. The reduction in fertiliser inputs from arable farming and the N uptake by the forest are predicted to reduce the N flux reaching the main river system, leading to a 33% reduction in N-Nitrate concentrations in the river water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated approach to climate change impact assessment is explored by linking established models of regional climate (SDSM), water resources (CATCHMOD) and water quality (INCA) within a single framework. A case study of the River Kennet illustrates how the system can be used to investigate aspects of climate change uncertainty, deployable water resources, and water quality dynamics in upper and lower reaches of the drainage network. The results confirm the large uncertainty in climate change scenarios and freshwater impacts due to the choice of general circulation model (GCM). This uncertainty is shown to be greatest during summer months as evidenced by large variations between GCM-derived projections of future tow river flows, deployable yield from groundwater, severity of nutrient flushing episodes, and Long-term trends in surface water quality. Other impacts arising from agricultural land-use reform or delivery of EU Water Framework Directive objectives under climate change could be evaluated using the same framework. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric Sounding Unit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m−2, which is only 78% of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m−2 owing to strong compensation between negative shortwave and positive longwave forcings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current global atmospheric models fail to simulate well organised tropical phenomena in which convection interacts with dynamics and physics. A new methodology to identify convectively coupled equatorial waves, developed by NCAS-Climate, has been applied to output from the two latest models of the Met Office/Hadley Centre which have fundamental differences in dynamical formulation. Variability, horizontal and vertical structures, and propagation characteristics of tropical convection and equatorial waves, along with their coupled behaviour in the models are examined and evaluated against a previous comprehensive study of observations. It is shown that, in general, the models perform well for equatorial waves coupled with off-equatorial convection. However they perform poorly for waves coupled with equatorial convection. The vertical structure of the simulated wave is not conducive to energy conversion/growth and does not support the correct physical-dynamical coupling that occurs in the real world. The following figure shows an example of the Kelvin wave coupled with equatorial convection. It shows that the models fail to simulate a key feature of convectively coupled Kelvin wave in observations, namely near surface anomalous equatorial zonal winds together with intensified equatorial convection and westerly winds in phase with the convection. The models are also not able to capture the observed vertical tilt structure and the vertical propagation of the Kelvin wave into the lower stratosphere as well as the secondary peak in the mid-troposphere, particularly in HadAM3. These results can be used to provide a test-bed for experimentation to improve the coupling of physics and dynamics in climate and weather models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while eddy feedback on the zonal flow may be interpreted in terms of wave breaking associated with baroclinic life cycles in lateral shear.