930 resultados para heavy-ion cancer therapy
Resumo:
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Resumo:
mTOR (mechanistic target of rapamycin) functions as the central regulator for cell proliferation, growth and survival. Up-regulation of proteins regulating mTOR, as well as its downstream targets, has been reported in various cancers. This has promoted the development of anti-cancer therapies targeting mTOR, namely fungal macrolide rapamycin, a naturally occurring mTOR inhibitor, and its analogues (rapalogues). One such rapalogue, everolimus, has been approved in the clinical treatment of renal and breast cancers. Although results have demonstrated that these mTOR inhibitors are effective in attenuating cell growth of cancer cells under in vitro and in vivo conditions, subsequent sporadic response to rapalogues therapy in clinical trials has promoted researchers to look further into the complex understanding of the dynamics of mTOR regulation in the tumour environment. Limitations of these rapalogues include the sensitivity of tumour subsets to mTOR inhibition. Additionally, it is well known that rapamycin and its rapalogues mediate their effects by inhibiting mTORC (mTOR complex) 1, with limited or no effect on mTORC2 activity. The present review summarizes the pre-clinical, clinical and recent discoveries, with emphasis on the cellular and molecular effects of everolimus in cancer therapy.
Resumo:
Current shortcomings in cancer therapy require the generation of new, broadly applicable, potent, targeted treatments. Here, an adenovirus is engineered to replicate specifically in cells with active human telomerase promotion using a modified hTERT promoter, fused to a CMV promoter element. The virus was also modified to contain a visible reporter transgene, GFP. The virus, Ad/hTC-GFP-E1 was characterized in vitro and demonstrated tumor specific activity both by dose and over time course experiments in a variety of cell lines. In vivo, Ad/hTC-GFP-E1 was affected at suppressing tumor growth and providing a survival benefit without causing any measurable toxicity. To increase the host range of the vector, the fiber region was modified to contain an RGD-motif. The vector, AdRGD/hTC-GFP-E1, was recharacterized in vitro, revealing heightened levels of infectivity and toxicity however maintaining a therapeutic window between cancer and normal cell toxicity. AdRGD/hTC-GFP-E1 was administered in vivo by limb perfusion and was observed to be tumor specific both in expression and replication. To further enhance the efficacy of viral vectors in lung delivery, asthma medications were investigated for their abilities to enhance transgene delivery and expression. A combination of bronchodilators, mast cell inhibitors, and mucolytic agents was devised which demonstrated fold increases in expression in immunocompetent mouse lungs as single agents and more homogenous, intense levels of expression when done in combination of all agents. To characterize the methods in which some cancers are resistant or may become resistant to oncolytic treatments, several small molecule inhibitors of metabolic pathways were applied in combination with oncolytic infection in vitro. SP600125 and PD 98059, respective JNK and ERK inhibitors, successfully suppressed oncolytic toxicity, however did not affect infectivity or transgene expression of Ad/hTC-GFP-E1. JNK and ERK inhibition did significantly suppress viral replication, however, as analyzed by lysate transfer and titration assays. In contrast, SB 203580, an inhibitor for p38, did not demonstrate any protective effects with infected cells. Flow cytometric analysis indicated a possible correlation with G1 arrest and suppressed viral production, however more compounds must be investigated to clarify this observation. ^
Resumo:
Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^
Resumo:
Over 80% of p53 mutations found in human cancers are p53 missense mutations. Recent studies have shown that p53 restoration leads to tumor regression in mice with p53 deletions, but the therapeutic efficacy of p53 restoration in tumors containing p53 missense mutations has not been evaluated. Since p53 mutant such as p53R172H has gain-of-function activities and dominant-negative effect that repress wild type p53, the activity of restored wild-type p53 might be compromised by the mutant p53 in tumors. We hypothesized that p53 restoration in tumors with the p53R172H mutation may be less therapeutically effective as p53 restoration in tumors null for p53. I tested this hypothesis by comparison of the therapeutic outcomes of p53 restoration in mice with spontaneous tumors that either lacked p53 or contained the p53R172H mutation. While p53 restoration causes tumor regression in mice lacking p53, the same p53 restoration halts tumor progression in mice with the p53R172H mutation. This phenotypic difference suggests a dominant-negative activity of the mutant p53. Moreover, I showed that the mutant p53 only inhibits part of the activity of the restored wild-type p53 and that the remaining wild-type activity still causes a delay in tumor progression. We conclude that p53 restoration has therapeutic potential in p53R172H tumors via suppression of tumor progression. This knowledge is of critical importance for p53 targeted cancer therapy because many patients with cancers harbor p53 missense mutations rather p53-null mutations. Since p53R172H mutation represents one of the most frequent and potent p53 missense mutations observed in human cancers, the current findings implicates that p53 restoration may be therapeutically important not only in human cancers characterized by loss of p53 alleles but also in those in which p53 missense mutations play an important pathogenetic role. ^
Resumo:
Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing exons in each component (Mst1, Mst2, Sav1, Lats1 and Lats2). These mice were then crossed with different cre-mouse lines to generate conditional knockout mice. Results indicate a ubiquitous tumor suppression function of these components, predominantly in the liver. A further liver specific analysis of the deletion mutation of these components, as well as the Yap/Taz double deletion mutation, reveals essential roles of the Hippo pathway in regulating hepatic quiescence and embryonic liver development. One of the key cellular mechanisms for the Hippo pathway’s involvement in these liver biological events is likely its cell cycle regulation function. Our work will help to develop potential therapeutic approaches for liver cancer.
Resumo:
Tumor growth often outpaces its vascularization, leading to development of a hypoxic tumor microenvironment. In response, an intracellular hypoxia survival pathway is initiated by heterodimerization of hypoxia-inducible factor (HIF)-1α and HIF-1β, which subsequently upregulates the expression of several hypoxia-inducible genes, promotes cell survival and stimulates angiogenesis in the oxygen-deprived environment. Hypoxic tumor regions are often associated with resistance to various classes of radio- or chemotherapeutic agents. Therefore, development of HIF-1α/β heterodimerization inhibitors may provide a novel approach to anti-cancer therapy. To this end, a novel approach for imaging HIF-1α/β heterodimerization in vitro and in vivo was developed in this study. Using this screening platform, we identified a promising lead candidate and further chemically derivatized the lead candidate to assess the structure-activity relationship (SAR). The most effective first generation drug inhibitors were selected and their pharmacodynamics and anti-tumor efficacy in vivo were verified by bioluminescence imaging (BLI) of HIF-1α/β heterodimerization in the xenograft tumor model. Furthermore, the first generation drug inhibitors, M-TMCP and D-TMCP, demonstrated efficacy as monotherapies, resulting in tumor growth inhibition via disruption of HIF-1 signaling-mediated tumor stromal neoangiogenesis.
Resumo:
This thesis presents a task-oriented approach to telemanipulation for maintenance in large scientific facilities, with specific focus on the particle accelerator facilities at European Organization for Nuclear Research (CERN) in Geneva, Switzerland and GSI Helmholtz Centre for Heavy Ion Research (GSI) in Darmstadt, Germany. It examines how telemanipulation can be used in these facilities and reviews how this differs from the representation of telemanipulation tasks within the literature. It provides methods to assess and compare telemanipulation procedures as well a test suite to compare telemanipulators themselves from a dexterity perspective. It presents a formalisation of telemanipulation procedures into a hierarchical model which can be then used as a basis to aid maintenance engineers in assessing tasks for telemanipulation, and as the basis for future research. The model introduces a new concept of Elemental Actions as the building block of telemanipulation movements and incorporates the dependent factors for procedures at a higher level of abstraction. In order to gain insight into realistic tasks performed by telemanipulation systems within both industrial and research environments a survey of teleoperation experts is presented. Analysis of the responses is performed from which it is concluded that there is a need within the robotics community for physical benchmarking tests which are geared towards evaluating the dexterity of telemanipulators for comparison of their dexterous abilities. A three stage test suite is presented which is designed to allow maintenance engineers to assess different telemanipulators for their dexterity. This incorporates general characteristics of the system, a method to compare kinematic reachability of multiple telemanipulators and physical test setups to assess dexterity from a both a qualitative perspective and measurably by using performance metrics. Finally, experimental results are provided for the application of the proposed test suite onto two telemanipulation systems, one from a research setting and the other within CERN. It describes the procedure performed and discusses comparisons between the two systems, as well as providing input from the expert operator of the CERN system.
Resumo:
Successful micro and nano-particle patterning on iron doped lithium niobate waveguides using photovoltaic fields is reported. This technique previously used in bulk crystals is here applied to waveguide configuration. Well defined particle patterns are obtained using two types of planar waveguides (by proton exchanged and swift heavy ion irradiation) and metallic and dielectric neutral particles. The use of waveguide configuration has allowed a reduction of the light exposure time until 3 s, two orders of magnitude smaller than typical values used in bulk.
Resumo:
A medida que se incrementa la energía de los aceleradores de partículas o iones pesados como el CERN o GSI, de los reactores de fusión como JET o ITER, u otros experimentos científicos, se va haciendo cada vez más imprescindible el uso de técnicas de manipulación remota para la interacción con el entorno sujeto a la radiación. Hasta ahora la tasa de dosis radioactiva en el CERN podía tomar valores cercanos a algunos mSv para tiempos de enfriamiento de horas, que permitían la intervención humana para tareas de mantenimiento. Durante los primeros ensayos con plasma en JET, se alcanzaban valores cercanos a los 200 μSv después de un tiempo de enfriamiento de 4 meses y ya se hacía extensivo el uso de técnicas de manipulación remota. Hay una clara tendencia al incremento de los niveles de radioactividad en el futuro en este tipo de instalaciones. Un claro ejemplo es ITER, donde se esperan valores de 450 Sv/h en el centro del toroide a los 11 días de enfriamiento o los nuevos niveles energéticos del CERN que harán necesario una apuesta por niveles de mantenimiento remotos. En estas circunstancias se enmarca esta tesis, que estudia un sistema de control bilateral basado en fuerza-posición, tratando de evitar el uso de sensores de fuerza/par, cuyo contenido electrónico los hace especialmente sensitivos en estos ambientes. El contenido de este trabajo se centra en la teleoperación de robots industriales, que debido a su reconocida solvencia y facilidad para ser adaptados a estos entornos, unido al bajo coste y alta disponibilidad, les convierte en una alternativa interesante para tareas de manipulación remota frente a costosas soluciones a medida. En primer lugar se considera el problema cinemático de teleoperación maestro-esclavo de cinemática disimilar y se desarrolla un método general para la solución del problema en el que se incluye el uso de fuerzas asistivas para guiar al operador. A continuación se explican con detalle los experimentos realizados con un robot ABB y que muestran las dificultades encontradas y recomendaciones para solventarlas. Se concluye el estudio cinemático con un método para el encaje de espacios de trabajo entre maestro y esclavo disimilares. Posteriormente se mira hacia la dinámica, estudiándose el modelado de robots con vistas a obtener un método que permita estimar las fuerzas externas que actúan sobre los mismos. Durante la caracterización del modelo dinámico, se realizan varios ensayos para tratar de encontrar un compromiso entre complejidad de cálculo y error de estimación. También se dan las claves para modelar y caracterizar robots con estructura en forma de paralelogramo y se presenta la arquitectura de control deseada. Una vez obtenido el modelo completo del esclavo, se investigan diferentes alternativas que permitan una estimación de fuerzas externas en tiempo real, minimizando las derivadas de la posición para minimizar el ruido. Se comienza utilizando observadores clásicos del estado para ir evolucionando hasta llegar al desarrollo de un observador de tipo Luenberger-Sliding cuya implementación es relativamente sencilla y sus resultados contundentes. También se analiza el uso del observador propuesto durante un control bilateral simulado en el que se compara la realimentación de fuerzas obtenida con las técnicas clásicas basadas en error de posición frente a un control basado en fuerza-posición donde la fuerza es estimada y no medida. Se comprueba como la solución propuesta da resultados comparables con las arquitecturas clásicas y sin embargo introduce una alternativa para la teleoperación de robots industriales cuya teleoperación en entornos radioactivos sería imposible de otra manera. Finalmente se analizan los problemas derivados de la aplicación práctica de la teleoperación en los escenarios mencionados anteriormente. Debido a las condiciones prohibitivas para todo equipo electrónico, los sistemas de control se deben colocar a gran distancia de los manipuladores, dando lugar a longitudes de cable de centenares de metros. En estas condiciones se crean sobretensiones en controladores basados en PWM que pueden ser destructivas para el sistema formado por control, cableado y actuador, y por tanto, han de ser eliminadas. En este trabajo se propone una solución basada en un filtro LC comercial y se prueba de forma extensiva que su inclusión no produce efectos negativos sobre el control del actuador. ABSTRACT As the energy on the particle accelerators or heavy ion accelerators such as CERN or GSI, fusion reactors such as JET or ITER, or other scientific experiments is increased, it is becoming increasingly necessary to use remote handling techniques to interact with the remote and radioactive environment. So far, the dose rate at CERN could present values near several mSv for cooling times on the range of hours, which allowed human intervention for maintenance tasks. At JET, they measured values close to 200 μSv after a cooling time of 4 months and since then, the remote handling techniques became usual. There is a clear tendency to increase the radiation levels in the future. A clear example is ITER, where values of 450 Sv/h are expected in the centre of the torus after 11 days of cooling. Also, the new energetic levels of CERN are expected to lead to a more advanced remote handling means. In these circumstances this thesis is framed, studying a bilateral control system based on force-position, trying to avoid the use of force/torque sensors, whose electronic content makes them very sensitive in these environments. The contents of this work are focused on teleoperating industrial robots, which due its well-known reliability, easiness to be adapted to these environments, cost-effectiveness and high availability, are considered as an interesting alternative to expensive custom-made solutions for remote handling tasks. Firstly, the kinematic problem of teloperating master and slave with dissimilar kinematics is analysed and a new general approach for solving this issue is presented. The solution includes using assistive forces in order to guide the human operator. Coming up next, I explain with detail the experiments accomplished with an ABB robot that show the difficulties encountered and the proposed solutions. This section is concluded with a method to match the master’s and slave’s workspaces when they present dissimilar kinematics. Later on, the research studies the dynamics, with special focus on robot modelling with the purpose of obtaining a method that allows to estimate external forces acting on them. During the characterisation of the model’s parameters, a set of tests are performed in order to get to a compromise between computational complexity and estimation error. Key points for modelling and characterising robots with a parallelogram structure are also given, and the desired control architecture is presented. Once a complete model of the slave is obtained, different alternatives for external force estimation are review to be able to predict forces in real time, minimizing the position differentiation to minimize the estimation noise. The research starts by implementing classic state observers and then it evolves towards the use of Luenberger- Sliding observers whose implementation is relatively easy and the results are convincing. I also analyse the use of proposed observer during a simulated bilateral control on which the force feedback obtained with the classic techniques based on the position error is compared versus a control architecture based on force-position, where the force is estimated instead of measured. I t is checked how the proposed solution gives results comparable with the classical techniques and however introduces an alternative method for teleoperating industrial robots whose teleoperation in radioactive environments would have been impossible in a different way. Finally, the problems originated by the practical application of teleoperation in the before mentioned scenarios are analysed. Due the prohibitive conditions for every electronic equipment, the control systems should be placed far from the manipulators. This provokes that the power cables that fed the slaves devices can present lengths of hundreds of meters. In these circumstances, overvoltage waves are developed when implementing drives based on PWM technique. The occurrence of overvoltage is very dangerous for the system composed by drive, wiring and actuator, and has to be eliminated. During this work, a solution based on commercial LC filters is proposed and it is extensively proved that its inclusion does not introduce adverse effects into the actuator’s control.
Resumo:
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the host–tumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12–B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 × 107 pfu/mouse) of AdIL12–B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12–B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.
Resumo:
Overexpression of the RIα subunit of cAMP-dependent protein kinase (PKA) has been demonstrated in various human cancers. PKA has been suggested as a potential target for cancer therapy. The goal of the present study was to evaluate an anti-PKA antisense oligonucleotide (mixed-backbone oligonucleotide) as a therapeutic approach to human cancer treatment. The identified oligonucleotide inhibited the growth of cell lines of human colon cancer (LS174T, DLD-1), leukemia (HL-60), breast cancer (MCF-7, MDA-MB-468), and lung cancer (A549) in a time-, concentration-, and sequence-dependent manner. In a dose-dependent manner, the oligonucleotide displayed in vivo antitumor activity in severe combined immunodeficient and nude mice bearing xenografts of human cancers of the colon (LS174T), breast (MDA-MB-468), and lung (A549). The routes of drug administration were intraperitoneal and oral. Synergistic effects were found when the antisense oligonucleotide was used in combination with the cancer chemotherapeutic agent cisplatin. The pharmacokinetics of the oligonucleotide after oral administration of 35S-labeled oligonucleotide into tumor-bearing mice indicated an accumulation and retention of the oligonucleotide in tumor tissue. This study further provides a basis for clinical studies of the antisense oligonucleotide targeted to the RIα subunit of PKA (GEM 231) as a cancer therapeutic agent used alone or in combination with conventional chemotherapy.
Resumo:
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.
Resumo:
Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by growth retardation, cerebellar ataxia, oculocutaneous telangiectasias, and a high incidence of lymphomas and leukemias. In addition, AT patients are sensitive to ionizing radiation. Atm-deficient mice recapitulate most of the AT phenotype. p21cip1/waf1 (p21 hereafter), an inhibitor of cyclin-dependent kinases, has been implicated in cellular senescence and response to γ-radiation-induced DNA damage. To study the role of p21 in ATM-mediated signal transduction pathways, we examined the combined effect of the genetic loss of atm and p21 on growth control, radiation sensitivity, and tumorigenesis. As might have been expected, our data provide evidence that p21 modifies the in vitro senescent response seen in AT fibroblasts. Further, it is a downstream effector of ATM-mediated growth control. In addition, however, we find that loss of p21 in the context of an atm-deficient mouse leads to a delay in thymic lymphomagenesis and an increase in acute radiation sensitivity in vivo (the latter principally because of effects on the gut epithelium). Modification of these two crucial aspects of the ATM phenotype can be related to an apparent increase in spontaneous apoptosis seen in tumor cells and in the irradiated intestinal epithelium of mice doubly null for atm and p21. Thus, loss of p21 seems to contribute to tumor suppression by a mechanism that operates via a sensitized apoptotic response. These results have implications for cancer therapy in general and AT patients in particular.
Resumo:
The synthesis of DNA in mitochondria requires the uptake of deoxynucleotides into the matrix of the organelle. We have characterized a human cDNA encoding a member of the family of mitochondrial carriers. The protein has been overexpressed in bacteria and reconstituted into phospholipid vesicles where it catalyzed the transport of all four deoxy (d) NDPs, and, less efficiently, the corresponding dNTPs, in exchange for dNDPs, ADP, or ATP. It did not transport dNMPs, NMPs, deoxynucleosides, nucleosides, purines, or pyrimidines. The physiological role of this deoxynucleotide carrier is probably to supply deoxynucleotides to the mitochondrial matrix for conversion to triphosphates and incorporation into mitochondrial DNA. The protein is expressed in all human tissues that were examined except for placenta, in accord with such a central role. The deoxynucleotide carrier also transports dideoxynucleotides efficiently. It is likely to be medically important by providing the means of uptake into mitochondria of nucleoside analogs, leading to the mitochondrial impairment that underlies the toxic side effects of such drugs in the treatment of viral illnesses, including AIDS, and in cancer therapy.