920 resultados para heat transfer
Resumo:
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Heat treated electrical steel laminations have shown evidence of low ductility behavior, characterized by a small number of bends till fracture, on repeated bending tests. The laminations were produced using a new grade of electrical steel with much lower aluminum content than usual. The problem happens when the oxygen potential (measured by the dew point of the atmosphere) of the heat treatment atmosphere is abnormally high. Furthermore, ductility can be restored by a low-oxygen potential heat treatment. Although the heat treatment resulted in a loss of ductility, the magnetic properties were not deteriorated. The low ductility samples always show intergranular fracture, whereas the un-treated laminations fracture by cleavage. The low ductility is associated with the formation of silicon manganese nitride precipitates formed at grain boundaries, although they are not the cause of the low ductility. Ductility could be restored by a low dew point heat treatment but the inclusions remained in the grain boundaries. The low ductility and its recovery must be ascribed to the presence of nitrogen atoms segregated to the grain boundaries when the heat treatment atmosphere has a high oxygen potential. The lack of aluminum in the composition of the steel hinders the scavenging effect of this element on nitrogen atoms in solution in the steel. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The premature failure of a horizontal heat-exchanger, which occurred after service exposure at 580 degrees C for 50,000 h, revealed the occurrence of extensive through-thickness cracking in approximately 40% of the tube/stationary tube-sheet welds. Additionally, the internal surface of the welded joint featured intensive secondary intergranular cracking (up to 250 mu m deep), preferential formation of a 150 mu m thick layer of (Fe, Cr)(3)O-4 and internal intergranular oxidation (40 mu m deep). The welded region also showed intense carbon pick-up and, as consequence, severe precipitation of intergranular M7C3 and M23C6 carbides. The fracture surface was composed of two distinct regions: a ""planar"" region of 250 mu m, formed due to the stable crack growth along by the intergranular oxidation; and a slant region with radial marks, formed by the fast crack growth along the network of intergranular carbides. The association of intergranular oxidation pre-cracks with microstructural embrittlement promoted the premature failure, which took place by an overload mechanism, probably due to the jamming of the floating tube-sheet during the maintenance halt (cooling operation). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The study of non-Newtonian flow in plate heat exchangers (PHEs) is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50 degrees chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 <= T <= 85.8 degrees C) and soluble solids content (11.0 <= X(s) <= 52.4 degrees Brix). The Ostwald-de Waele (power law) model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 <= Re(g) <= 1230) and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.
Resumo:
A green ceramic tape micro-heat exchanger was developed using Low Temperature Co-fired Ceramics technology (LTCC). The device was designed by using Computational Aided Design software and simulations were made using a Computational Fluid Dynamics package (COMSOL Multiphysics) to evaluate the homogeneity of fluid distribution in the microchannels. Four geometries were proposed and simulated in two and three dimensions to show that geometric details directly affect the distribution of velocity in the micro-heat exchanger channels. The simulation results were quite useful for the design of the microfluidic device. The micro-heat exchanger was then constructed using the LTCC technology and is composed of five thermal exchange plates in cross-flow arrangement and two connecting plates, with all plates stacked to form a device with external dimensions of 26 x 26 x 6 mm(3).