1000 resultados para growth mindset
Resumo:
Garnet-kyanite-staurolite gneiss in the Pangong complex, Ladakh Himalaya, contains porphyroblastic euhedral garnets, blades of kyanite and resorbed staurolite surrounded by a fine-grained muscovite-biotite matrix associated with a leucogranite layer. Sillimanite is absent. The gneiss contains two generations of garnet in cores and rims that represent two stages of metamorphism. Garnet cores are extremely rich in Mn (X(Sps) = 0.35-038) and poor in Fe (X(Alm) = 0.40-0.45), whereas rims are relatively Mn-poor (X(Sps) =0.07-0.08), and rich in Fe (X(Alm), = 0.75-0.77). We suggest that garnet cores formed during prograde metamorphism in a subduction zone followed by abrupt exhumation, during early collision of the Ladakh arc and Karakoram block. The subsequent India-Asia continental collision subducted the metamorphic rocks to a mid-crustal level, where the garnet rims overgrew the Mn-rich cores at ca. 680 degrees C and ca. 8.5 kbar. PT calculations were estimated from phase diagrams calculated using a calculated bulk chemical composition in the Mn-NCKFMASHT system for the garnet-kyanite-staurolite-bearing assemblage. Muscovites from the metamorphic rocks and associated leucogranites have consistent K-Ar ages (ca. 10 Ma), closely related to activation of the Karakoram fault in the Pangong metamorphic complex. These ages indicate the contemporaneity of the exhumation of the metamorphic rocks and the cooling of the leucogranites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present work, we report the growth of wurtzite InN epilayers on GaN/Si (1 1 1) substrate by plasma-assisted molecular beam epitaxy (PAMBE). The growth parameters such as indium flux, substrate temperature and RF power affect the crystallographic and morphological properties of InN layers, which were evaluated using high resolution X-ray diffraction (HRXRD) analysis and atomic force microscopy (AFM). It is found that excess indium (In) concentrations and surface roughness were increased with increase in In flux and growth temperature. The intensity of HRXRD (0 0 0 2) peak, corresponding to c-axis orientation has been increased and full width at half maxima (FWHM) has decreased with increase in RF power. It was found that highly c-axis oriented InN epilayers can be grown at 450 degrees C growth temperature, 450 W RF power and 1.30 x 10(-7) mbar In beam equivalent pressure (BEP). The energy gap of InN layers grown by optimizing growth conditions was determined by photoluminescence and optical absorption measurement. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The relations for the growth and consumption rates of a layer with finite thickness as an end member and the product phases in the interdiffusion zone are developed. We have used two different methodologies, the diffusion based and the physico-chemical approach to develop the same relations. We have shown that the diffusion based approach is rather straightforward; however, the physico-chemical approach is much more versatile than the other method. It was found that the position of the marker plane becomes vague in the second stage of the interdiffusion process in pure A thin layer/B couple, where two phases grow simultaneously.
Resumo:
The effects of Mo, Ti, and Zr on the diffusion and growth of the Nb(X)Si-2 and Nb(X)(5)Si-3 phases in an Nb(X)-Si system are analyzed. The integrated diffusion coefficients are determined from diffusion couple experiments and compared with the data previously calculated in a binary Nb-Si system. The growth rates of both phases are affected by the addition of Mo and Zr, whereas the addition of Ti has no effect. The atomic mechanism of diffusion is also discussed based on the crystal structure and the possible changes in the defect concentrations due to alloying. Finally, the growth mechanism of the phases is discussed on the basis of a physico-chemical approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.
Resumo:
The Rotatary Bridgman method was used to grow ternary InSb(1-x)SBix, crystals. In this method the ampoule was subjected to reversible rotation at a rate of 60rpm. High quality crystals of 8mm diameter and 25mm length were grown with 6.5 atomic percentage of Bi. The grown crystals were characterized employing various techniques such as energy dispersive spectroscopy, x-ray diffraction, differential scanning calorimetery, infrared spectroscopy and Hall measurement.
Resumo:
Pin loaded lug joints fitted with different types of pins are analysed in the presence of cracks at pin-plate interface. An algorithm for finite element contact stress analysis of joints developed earlier to deal with varying partial contact/separation at the pin-plate interface using a marching solution is used in the present analysis. Stress Intensity Factors (SIF) at the crack tips are evaluated using Modified Crack Closure Integral (MCCI) method within the realm of Linear Elastic Fracture Mechanics (LEFM) assumptions. A comparison of fatigue crack growth lives between interference and push fit pin joints is carried out using these SIF's. Results from a finite element analysis on a push fit pin joint are used to fit experimental fatigue crack growth data.
Resumo:
3-(2,3-Dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (DMPP) a potential second harmonic generating (SHG) has been synthesized and grown as a single crystal by the slow evaporation technique at ambient temperature. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. DMPP crystallizes with orthorhombic system with cell parameters a = 20.3106(8)angstrom, b = 4.9574(2)angstrom, c = 13.4863(5)angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees and space group Pca2(1). The crystals were characterized by FT-IR, thermal analysis, UV-vis-NIR spectroscopy and SHG measurements. Various functional groups present in DMPP were ascertained by FTIR analysis. DMPP is thermally stable up to 80 degrees C and optically transparent in the visible region. The crystal exhibits SHG efficiency comparable to that of KDP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dense rutile TiO2 nanorods were grown on anatase TiO2 seed layer coated glass substrate by solution technique. The crystalline nature of nanorods has confirmed by transmission electron microscopy. The band gap of the TiO2 seed layer and nanorods were calculated using the UV-vis absorption spectrum and the band gap value of the anatase seed layer and rutile nanorods were 3.39 eV and 3.09 eV respectively. Water contact angle measurements were also made and showed that the contact angle of rutile nanorods was (134 degrees) larger than the seed layer contact angle (93 degrees). The RMS surface roughness of the TiO2 seed layer (0.384 nm) and nanorods film (18.5 nm) were measured by an atomic force microscope and correlated with their contact angle values. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The progesterone-regulated glycoprotein glycodelin-A (GdA), secreted by the decidualized endometrium at high concentrations in primates, inhibits the maternal immune response against fetal antigens and thereby contributes to the tolerance of the semi-allogenic fetus during a normal pregnancy. Our earlier studies demonstrated the ability of GdA to induce an intrinsic apoptotic cascade in CD4 T-lymphocytes and suppress the cytolytic effector function of CD8 T-lymphocytes. In this report, we investigated further into the mechanism of action of GdA controlling perforin and granzyme B expression in CD8 T-lymphocytes and the mechanism of action of GdA leading to lymphocyte death. Flow cytometry analysis was performed to check for the surface expression of interleukin-2 receptor (IL-2R) and intracellular eomesodermin (Eomes) in activated T-lymphocytes, whereas quantitative RTPCR analysis was used to find out their mRNA profile upon GdA treatment. Western analysis was carried out to confirm the protein level of Bax and Bcl-2. GdA reduces the surface expression of the high-affinity IL-2R complex by down-regulating the synthesis of IL-2R (CD25). This disturbs the optimal IL-2 signalling and decreases the Eomes expression, which along with IL-2 directly regulates perforin and granzymes expression. Consequently, the CD8 T-lymphocytes undergo growth arrest and are unable to mature into competent cytotoxic T-lymphocytes. In the CD4 T-lymphocytes, growth factor IL-2 deprivation leads to proliferation inhibition, decreased Bcl-2/enhanced Bax expression, culminating in mitochondrial stress and cell death. GdA spurs cell cycle arrest, loss of effector functions and apoptosis in different T-cell subsets by making T-lymphocytes unable to respond to IL-2.
Resumo:
Deleterious topological-closed-packed (tcp) phases grow in the interdiffusion zone in turbine blades mainly because of the addition of refractory elements such as Mo and W in the Ni- and Co-based superalloys. CoNi/Mo and CoNi/W diffusion couples are prepared to understand the growth mechanism of the phases in the interdiffusion zone. Instead of determining the main and cross-interdiffusion coefficients following the conventional method, we preferred to determine the average effective interdiffusion coefficients of two elements after fixing the composition of one element more or less the same in the interdiffusion zone. These parameters can be directly related to the growth kinetics of the phases and shed light on the atomic mechanism of diffusion. In both systems, the diffusion rate of elements and the phase layer thickness increased because of the addition of Ni in the solid solution phase, probably because of an increase in driving force. On the other hand, the growth rate of the mu phase and the diffusion coefficient of the species decreased because of the addition of Ni. This indicates the change in defect concentration, which assists diffusion. Further, we revisited the previously published Co-Ni-Mo and Co-Ni-W ternary phase diagrams and compared them with the composition range of the phases developed in the interdiffusion zone. Different composition ranges of the tcp phases are found, and corrected phase diagrams are shown. The outcome of this study will help to optimize the concentration of elements in superalloys to control the growth of the tcp phases.
Resumo:
A coupled methodology for simulating the simultaneous growth and motion of equiaxed dendrites in solidifying melts is presented. The model uses the volume-averaging principles and combines the features of the enthalpy method for modeling growth, immersed boundary method for handling the rigid solid-liquid interfaces, and the volume of fluid method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. A two-dimensional framework with incompressible and Newtonian fluid is considered. Validation with available literature is performed and dendrite growth in the presence of rotational and buoyancy driven flow fields is studied. It is seen that the flow fields significantly alter the position and morphology of the dendrites. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study the growth kinetics of nanoclusters in solution. There are two generic factors that drive growth: (a) reactions that produce the nanomaterial; and (b) diffusion of the nanomaterial due to chemical-potential gradients. We model the growth kinetics of ZnO nanoparticles via coupled dynamical equations for the relevant order parameters, We study this model both analytically and numerically. We find that there is a crossover in thenanocluster growth law: from L(t) similar to t(1/2) in the reaction-controlled regime to L(t) t(1/3) in the diffusion-controlled regime.
Resumo:
The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components G (I) and G (II) using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio R = -1. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component G (I) since the rate of growth in shear mode is relatively small. The value of Paris exponent m is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.
Resumo:
Scaling laws are represented in power law form and can be utilized to extract the characteristic properties of a new phenomenon with the help of self-similar solutions. In this work, an attempt has been made to propose a scaling law analytically, for plain concrete when subjected to variable amplitude loading. Due to the application of overload on concrete structures, acceleration in the crack growth process takes place. A closed form expression has been developed to capture the acceleration in crack growth rate in conjunction with the principles of dimensional analysis and self-similarity. The proposed model accounts for parameters such as, the tensile strength, fracture toughness, overload effect and the structural size. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between the different parameters involved. The predicted results are compared with experimental crack growth data for variable amplitude loading and are found to capture the overload effect with sufficient accuracy. Through a sensitivity analysis, fracture toughness is found to be the most dominant parameter in accelerating the crack length due to application of overload.