956 resultados para geographical heterogenity
Resumo:
The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.
Resumo:
In Tanzania, indigenous forests can still be found whose existence is based on the management systems of precolonial society. This study covers material from over 900 forests. There are similar types of forests elsewhere in Africa, and similar forests can also be found in indigenous cultures on every continent. In this study they are called traditionally protected forests (TPFs). They have a high level of endemism and a rich biodiversity. The field study was carried out during the years 1997-2003 using participatory methods. An active debate is going on concerning the capacity of local communities to manage their environment. The role of indigenous people and their institutions in the development of the physical environment is a central issue in the debate. This study discusses the opportunities that the local people have had to decide on how to conserve, maintain, utilise, and manage their environment during different political periods. The study explains what kinds of changes have taken place in these forests and institutions in northeastern Tanzania among the matrilinear Zigua and patrilinear Gweno ethnic groups. About 2% of the land area of the communities was still protected by the precolonial structures. The communities have established their protection systems for different reasons, not only because of their beliefs but also because of different secular and clearly environmentally motivated reasons. There are different TPF types. Less than half of them are directly related to spirituality, and more than half are not. In earlier research elsewhere, it has been commonly understood that spiritual reasons played the main role in the protection of these environments. This study is also part of the postcolonial geographical discussion on the precolonial landscape and environmental management which was started by Carl Sauer. In the Zigua case study villages, only two out of five first comer clans have performed rain rituals in the past 30 years. Many of the most respected sacred sites do not have a ritual maker or even a person who knows how to perform rituals any longer. The same is happening with male initiation rites. In all case study villages there have been illegal cuts in the TPFs, but variations can be seen between the communities. The number of those who neither respect indigenous regulations nor accept indigenous penalties is growing. Positive developments have also taken place. Nowadays, the Forest Act of 2002 is in effect, which works as a cornerstone of community-based land ownership and also allows elders to protect TPFs, and by-laws are created with the support of different projects. Moreover, during the field study it was found that many young people are ignorant about their village's TPF sites, but interested in learning about their history and values.
Resumo:
This study Contested Lands: Land disputes in semi-arid parts of northern Tanzania. Case Studies of the Loliondo and Sale Division in the Ngorongoro District concentrates on describing the specific land disputes which took place in the 1990s in the Loliondo and Sale Divisions of the Ngorongoro District in northern Tanzania. The study shows the territorial and historical transformation of territories and property and their relation to the land disputes of the 1990s'. It was assumed that land disputes have been firstly linked to changing spatiality due to the zoning policies of the State territoriality and, secondly, they can be related to the State control of property where the ownership of land property has been redefined through statutory laws. In the analysis of the land disputes issues such as use of territoriality, boundary construction and property claims, in geographical space, are highlighted. Generally, from the 1980s onwards, increases in human population within both Divisions have put pressure on land/resources. This has led to the increased control of land/resource, to the construction of boundaries and finally to formalized land rights on village lands of the Loliondo Division. The land disputes have thus been linked to the use of legal power and to the re-creation of the boundary (informal or formal) either by the Maasai or the Sonjo on the Loliondo and Sale village lands. In Loliondo Division land disputes have been resource-based and related to multiple allocations of land or game resource concessions. Land disputes became clearly political and legal struggles with an ecological reference.Land disputes were stimulated when the common land/resource rights on village lands of the Maasai pastoralists became regulated and insecure. The analysis of past land disputes showed that space-place tensions on village lands can be presented as a platform on which spatial and property issues with complex power relations have been debated. The reduction of future land disputes will succeed only when/if local property rights to land and resources are acknowledged, especially in rural lands of the Tanzanian State.
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
Determination of the environmental factors controlling earth surface processes and landform patterns is one of the central themes in physical geography. However, the identification of the main drivers of the geomorphological phenomena is often challenging. Novel spatial analysis and modelling methods could provide new insights into the process-environment relationships. The objective of this research was to map and quantitatively analyse the occurrence of cryogenic phenomena in subarctic Finland. More precisely, utilising a grid-based approach the distribution and abundance of periglacial landforms were modelled to identify important landscape scale environmental factors. The study was performed using a comprehensive empirical data set of periglacial landforms from an area of 600 km2 at a 25-ha resolution. The utilised statistical methods were generalized linear modelling (GLM) and hierarchical partitioning (HP). GLMs were used to produce distribution and abundance models and HP to reveal independently the most likely causal variables. The GLM models were assessed utilising statistical evaluation measures, prediction maps, field observations and the results of HP analyses. A total of 40 different landform types and subtypes were identified. Topographical, soil property and vegetation variables were the primary correlates for the occurrence and cover of active periglacial landforms on the landscape scale. In the model evaluation, most of the GLMs were shown to be robust although the explanation power, prediction ability as well as the selected explanatory variables varied between the models. The great potential of the combination of a spatial grid system, terrain data and novel statistical techniques to map the occurrence of periglacial landforms was demonstrated in this study. GLM proved to be a useful modelling framework for testing the shapes of the response functions and significances of the environmental variables and the HP method helped to make better deductions of the important factors of earth surface processes. Hence, the numerical approach presented in this study can be a useful addition to the current range of techniques available to researchers to map and monitor different geographical phenomena.
Resumo:
Palaeoenvironments of the latter half of the Weichselian ice age and the transition to the Holocene, from ca. 52 to 4 ka, were investigated using isotopic analysis of oxygen, carbon and strontium in mammal skeletal apatite. The study material consisted predominantly of subfossil bones and teeth of the woolly mammoth (Mammuthus primigenius Blumenbach), collected from Europe and Wrangel Island, northeastern Siberia. All samples have been radiocarbon dated, and their ages range from >52 ka to 4 ka. Altogether, 100 specimens were sampled for the isotopic work. In Europe, the studies focused on the glacial palaeoclimate and habitat palaeoecology. To minimise the influence of possible diagenetic effects, the palaeoclimatological and ecological reconstructions were based on the enamel samples only. The results of the oxygen isotope analysis of mammoth enamel phosphate from Finland and adjacent nortwestern Russia, Estonia, Latvia, Lithuania, Poland, Denmark and Sweden provide the first estimate of oxygen isotope values in glacial precipitation in northern Europe. The glacial precipitation oxygen isotope values range from ca. -9.2±1.5 in western Denmark to -15.3 in Kirillov, northwestern Russia. These values are 0.6-4.1 lower than those in present-day precipitation, with the largest changes recorded in the currently marine influenced southern Sweden and the Baltic region. The new enamel-derived oxygen isotope data from this study, combined with oxygen isotope records from earlier investigations on mammoth tooth enamel and palaeogroundwaters, facilitate a reconstruction of the spatial patterns of the oxygen isotope values of precipitation and palaeotemperatures over much of Europe. The reconstructed geographic pattern of oxygen isotope levels in precipitation during 52-24 ka reflects the progressive isotopic depletion of air masses moving northeast, consistent with a westerly source of moisture for the entire region, and a circulation pattern similar to that of the present-day. The application of regionally varied δ/T-slopes, estimated from palaeogroundwater data and modern spatial correlations, yield reasonable estimates of glacial surface temperatures in Europe and imply 2-9°C lower long-term mean annual surface temperatures during the glacial period. The isotopic composition of carbon in the enamel samples indicates a pure C3 diet for the European mammoths, in agreement with previous investigations of mammoth ecology. A faint geographical gradient in the carbon isotope values of enamel is discernible, with more negative values in the northeast. The spatial trend is consistent with the climatic implications of the enamel oxygen isotope data, but may also suggest regional differences in habitat openness. The palaeogeographical changes caused by the eustatic rise of global sea level at the end of the Weichselian ice age was investigated on Wrangel Island, using the strontium isotope (Sr-87/Sr-86) ratios in the skeletal apatite of the local mammoth fauna. The diagenetic evaluations suggest good preservation of the original Sr isotope ratios, even in the bone specimens included in the study material. To estimate present-day environmental Sr isotope values on Wrangel Island, bioapatite samples from modern reindeer and muskoxen, as well as surface waters from rivers and ice wedges were analysed. A significant shift towards more radiogenic bioapatite Sr isotope ratios, from 0.71218 ± 0.00103 to 0.71491 ± 0.00138, marks the beginning of the Holocene. This implies a change in the migration patterns of the mammals, ultimately reflecting the inundation of the mainland connection and isolation of the population. The bioapatite Sr isotope data supports published coastline reconstructions placing the time of separation from the mainland to ca. 10-10.5 ka ago. The shift towards more radiogenic Sr isotope values in mid-Holocene subfossil remains after 8 ka ago reflects the rapid rise of the sea level from 10 to 8 ka, resulting in a considerable reduction of the accessible range area on the early Wrangel Island.
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
In this Ph.D. thesis I have studied how the objectives of sustainable development have been integrated into Northwest Russian urban and regional planning, and how the Russian planning discourse has changed after the collapse of the Soviet Union. By analysing the planning discussion, processes, and strategic documents I have also investigated the use of power and governmentality in urban and regional planning. As a methodological foundation I have used an approach that I call geographical constructivism . It was possible to answer in a relevant manner the question of how sustainable development has become a part of planning in Northwest Russia through a discourse analysis of the planning discussion. During the last decades, the aim of sustainable development has become globally one of the most central societal challenges. Urban and regional planning has a central role to play in promoting this process, since many meta-level objectives actually take shape within its sphere. An ever more actual challenge brought by sustainable development is to plan regions and places while balancing the conflicts of the pressures of safeguarding a good environment and of taking into consideration social and economic needs. I have given these unavoidable conflicts of sustainable development a central place in my work. In my view, complementing instrumental and communicative rationality with conflict rationality gives environmental planning a well-equipped toolbox. Sustainable development can be enhanced in urban and regional planning by seeking open, and especially hidden, potential conflicts. Thus, the expressed thinking (mentality) and actions taken by power regimes in and around conflicts open an interesting viewpoint into Northwest Russian governmentality. I examine the significance of sustainable development in planning through Northwest Russian geography, and also through recent planning legislation and four case studies. In addition, I project my analysis of empirical material onto the latest discussion of planning theory. My four case studies, which are based on independent and separate empirical material (42 thematic interviews and planning documents), consider the republics of Karelia and Komi, Leningrad oblast and the city of Saint Petersburg. In the dissertation I argue how sustainable development is, in the local governmentalities of Northwest Russia, understood as a concept where solving environmental problems is central, and that they can be solved through planning carried out by the planning professionals. Despite this idealism, environmental improvements have been overlooked by appealing to difficult economic factors. This is what I consider environmental racism, which I think is the most central barrier to sustainable development in Northwest Russia. The situation concerning the social dimension of sustainable development is even more difficult, since, for example, the development of local democracy is not highly valued. In the planning discourse this democracy racism is explained by a short history of democracy in Russia. However, precisely through planning conflicts, for example in St. Petersburg, planning has become socially more sustainable: protests by local inhabitants have bypassed the poorly functioning representational democracy, when the governmentality has changed from a mute use of power to one that adopts a stand on a conflicting issue. Keywords: Russia, urban and regional planning, sustainable development, environmental planning, power and conflicts in planning, governmentality, rationalities.
Resumo:
Nisäkkäiden levinneisyyteen, niiden morfologisiin ja ekologisiin piirteisiin vaikuttavat ympäristön sekä lyhyet että pitkäkestoiset muutokset, etenkin ilmaston ja kasvillisuuden vaihtelut. Työssä tutkittiin nisäkkäiden sopeutumista ilmastonmuutoksiin Euraasiassa viimeisen 24 miljoonan vuoden aikana. Tutkimuksessa keskityttiin varsinkin viimeiseen kahteen miljoonaan vuoteen, jonka aikana ilmasto muuttui voimakkaasti ja ihmisen toiminta alkoi tulla merkittäväksi. Tämän takia on usein vaikea erottaa, kummasta em. seikasta jonkin nisäkäslajin sukupuutto tai häviäminen alueelta johtui. Aineistona käytettiin laajaa venäjänkielistä kirjallisuutta, josta löytyvät tiedot ovat kääntämättöminä jääneet aiemmin länsimaisen tutkimuksen ulkopuolelle. Työssä käytettiin myös NOW-tietokantaa, jossa on fossiilisten nisäkkäiden löytöpaikat sekä niiden iät.
Resumo:
To find out whether food-producing animals (FPAs) are a source of extraintestinal expanded-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) infections in humans, Medline, Embase, and the Cochrane Database of Systematic Reviews were systematically reviewed. Thirty-four original, peer-reviewed publications were identified for inclusion. Six molecular epidemiology studies supported the transfer of resistance via whole bacterium transmission (WBT), which was best characterized among poultry in the Netherlands. Thirteen molecular epidemiology studies supported transmission of resistance via mobile genetic elements, which demonstrated greater diversity of geography and host FPA. Seventeen molecular epidemiology studies did not support WBT and two did not support mobile genetic element-mediated transmission. Four observational epidemiology studies were consistent with zoonotic transmission. Overall, there is evidence that a proportion of human extraintestinal ESCR-EC infections originate from FPAs. Poultry, in particular, is probably a source, but the quantitative and geographical extent of the problem is unclear and requires further investigation.
Resumo:
We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high relevance given the urgent need for interdisciplinary, geographical, and cross-sector collaboration to cope with growing challenges to the environment as well as the scientific community itself. Amidst the emergence of new international institutions, organizations, and meetings, GCIPs provide a stable international infrastructure for rapid and long-term coordination that can be accessed by any individual. This accessibility can be especially important for researchers early in their careers. Recent examples of early-career GCIPs complement an array of existing options for early-career scientists to improve skill sets, increase academic and social impact, and broaden career opportunities. We provide a number of examples of existing early-career initiatives that incorporate elements from the GCIPs approach, and highlight an in-depth case study from the ecological sciences: the International Network of Next-Generation Ecologists (INNGE), initiated in 2010 with support from the International Association for Ecology and 20 member institutions from six continents.
Resumo:
For the consumer, flavor is arguably the most important aspect of a good coffee. Coffee flavor is extremely complex and arises from numerous chemical, biological and physical influences of cultivar, coffee cherry maturity, geographical growing location, production, processing, roasting and cup preparation. Not surprisingly there is a large volume of research published detailing the volatile and non-volatile compounds in coffee and that are likely to be playing a role in coffee flavor. Further, there is much published on the sensory properties of coffee. Nevertheless, the link between flavor components and the sensory properties expressed in the complex matrix of coffee is yet to be fully understood. This paper provides an overview of the chemical components that are thought to be involved in the flavor and sensory quality of Arabica coffee.
Resumo:
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists.
Resumo:
Diseases caused by Tobacco streak virus (TSV) have resulted in significant crop losses in sunflower and mung bean crops in Australia. Two genetically distinct strains from central Queensland, TSV-parthenium and TSV-crownbeard, have been previously described. They share only 81% total-genome nucleotide sequence identity and have distinct major alternative hosts, Parthenium hysterophorus (parthenium) and Verbesina encelioides (crownbeard). We developed and used strain-specific multiplex Polymerase chain reactions (PCRs) for the three RNA segments of TSV-parthenium and TSV-crownbeard to accurately characterise the strains naturally infecting 41 hosts species. Hosts included species from 11 plant families, including 12 species endemic to Australia. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was both a natural host of, and experimentally infected by TSV-parthenium but this infection combination resulted in non-viable seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. TSV-crownbeard was seed transmitted from naturally infected crownbeard at a rate of between 5% and 50% and was closely associated with the geographical distribution of crownbeard in central Queensland. TSV-parthenium and TSV-crownbeard were also seed transmitted in experimentally infected ageratum (Ageratum houstonianum) at rates of up to 40% and 27%, respectively. The related subgroup 1 ilarvirus, Ageratum latent virus, was also seed transmitted at a rate of 18% in ageratum which is its major alternative host. Thrips species Frankliniella schultzei and Microcephalothrips abdominalis were commonly found in flowers of TSV-affected crops and nearby weed hosts. Both species readily transmitted TSV-parthenium and TSV-crownbeard. The results are discussed in terms of how two genetically and biologically distinct TSV strains have similar life cycle strategies in the same environment.
Resumo:
A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.