976 resultados para fungal spore germination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how climate change will affect the distribution and the phenology of plants is becoming an increasingly important topic in ecological studies. In response to climate warming, there are documented upward shift and alterations of phenology and physiology of several plant species. Despite this, the effects of climate change on plant regeneration from seeds have largely been neglected. However, regeneration from seeds, a key event in the plant life cycle, could be significantly affected by climate warming. In this regard, we investigated how climatic changes will affect the seasonal dynamics of seed germination and seedling survival in two different alpine context. The first part refers to five species inhabiting a snowbed located at the Gavia pass (Parco Naturale dello Stelvio). Here, plants were exposed, in the field, to natural conditions and to artificial warming using Open Top Chambers proposed by the ITEX (International Tundra Experiment). The germination curves of seeds produced were compared in order to highlight differences in seed germination ecology and in seed physiology induced by the climate warming. In the second part, we considered two tree species that form the treeline in Davos (Switzerland). As a surrogate of climate warming we used the natural thermal gradient driven by the altitude and we compared the germination behavior of the species studied in three sites at three different elevations in order to evaluate the likelihood of treeline shift under the predicted climate warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the 24 hour period following inoculation, aggregation of spores and sporelings can have an important effect on the subsequent growth of filamentous fungi in submerged culture. This early phase of growth does not appear to have received much attention, and it was for this reason that the author's research was started. The aggregation, germination and early growth of the filamentous fungus Aspergillus niger have been followed in aerated tower fermenters, by microscopic examination. By studying many individual sporelings it has been possible to estimate the specific growth rate and germination times, and then to assess the branching characteristics of the fungus over a period of from 1 to 10 hours after germination. The results have been incorporated into computer models to simulate the development of the physical structure of individual and aggregated sporelings. Following germination, and an initial rapid growth phase, fungi were found to grow exponentially: in the case of A.niger the mean germination time was about 5 hours and the doubling time was as short as 1.5 hours. Branching also followed an exponential pattern and appeared to be related to hyphal length. Using a simple hypothesis for growth along with empirical parameters, typical fungal structures were generated using the computer models : these compared well with actual sporelings observed under the microscope. Preliminary work suggested that the techniques used in this research could be successfully applied to a range of filamentous fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To investigate the influence of chemical and physical factors on the rate and extent of germination of Clostridium difficile spores. METHODS AND RESULTS: Germination of C. difficile spores following exposure to chemical and physical germinants was measured by loss of either heat or ethanol resistance. Sodium taurocholate and chenodeoxycholate initiated germination together with thioglycollate medium at concentrations of 0.1-100 mmol l(-1) and 10-100 mmol l(-1) respectively. Glycine (0.2% w/v) was a co-factor required for germination with sodium taurocholate. There was no significant difference in the rate of germination of C. difficile spores in aerobic and anaerobic conditions (P > 0.05) however, the initial rate of germination was significantly increased at 37 degrees C compared to 20 degrees C (P < 0.05). The optimum pH range for germination was 6.5-7.5, with a decreased rate and extent of germination occurring at pH 5.5 and 8.5. CONCLUSIONS: This study demonstrates that sodium taurocholate and chenodeoxycholate initiate germination of C. difficile spores and is concentration dependant. Temperature and pH influence the rate and extent of germination. SIGNIFICANCE AND IMPACT OF THE STUDY: This manuscript enhances the knowledge of the factors influencing the germination of C. difficile spores. This may be applied to the development of potential novel strategies for the prevention of C. difficile infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Persistent contamination of surfaces by spores of Clostridium difficile is a major factor influencing the spread of C. difficile-associated diarrhoea (CDAD) in the clinical setting. In recent years, the antimicrobial efficacy of metal surfaces has been investigated against microorganisms including methicillin-resistant Staphylococcus aureus. This study compared the survival of C. difficile on stainless steel, a metal contact surface widely used in hospitals, and copper surfaces. METHODS: Antimicrobial efficacy was assessed using a carrier test method against dormant spores, germinating spores and vegetative cells of C. difficile (NCTC 11204 and ribotype 027) over a 3 h period in the presence and absence of organic matter. RESULTS: Copper metal eliminated all vegetative cells of C. difficile within 30 min, compared with stainless steel which demonstrated no antimicrobial activity (P < 0.05). Copper significantly reduced the viability of spores of C. difficile exposed to the germinant (sodium taurocholate) in aerobic conditions within 60 min (P < 0.05) while achieving a >or=2.5 log reduction (99.8% reduction) at 3 h. Organic material did not reduce the antimicrobial efficacy of the copper surface (P > 0.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acanthamoeba polyphaga trophozoites bind yeast cells of Candida albicans isolates within a few hours, leaving few cells in suspension or still attached to trophozoite surfaces. The nature of yeast cell recognition, mediated by an acanthamoebal trophozoite mannose binding protein is confirmed by experiments utilizing concentration dependent mannose hapten blocking. Similarly, acapsulate cells of Cryptococcus neoformans are also bound within a relatively short timescale. However, even after protracted incubation many capsulate cells of Cryptococcus remain in suspension, suggesting that the capsulate cell form of this species is not predated by acanthamoebal trophozoites. Further aspects of the association of Acanthamoeba and fungi are apparent when studying their interaction with conidia of the biocontrol agent Coniothyrium minitans. Conidia which readily bind with increasing maturity of up to 42 days, were little endocytosed and even released. Cell and conidial surface mannose as determined by FITC-lectin binding, flow cytometry with associated ligand binding analysis and hapten blocking studies demonstrates the following phenomena. Candida isolates and acapsulate Cryptococcus expose most mannose, while capsulate Cryptococcus cells exhibit least exposure commensurate with yeast cellular binding or lack of trophozoites. Conidia of Coniothyrium, albeit in a localized fashion, also manifest surface mannose exposure but as shown by Bmax values, in decreasing amounts with increasing maturity. Contrastingly such conidia experience greater trophozoite binding with maturation, thereby questioning the primacy of a trophozoite mannose-binding-protein recognition model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following investigation characterises the interaction between temperature and growth in psychrophilic, mesophilic and thermophilic fungi in order to gain further insight into the physiological mechanisms underlying fungal growth at extreme temperatures. In the first part of the investigation, the effect of environmental temperature on the growth of vegetative mycelium and sporangiospore production and germination was considered in order to determine the cardinal temperatures of these activities in different thermal groups. Subsequent investigations of plasma membrane permeability suggested that plasma membrane structure and function may be significant in establishing both the upper and lower growth temperature limits characteristic of psychrophiles, mesophiles and thermophiles. Analysis of the plasma membrane fractions revealed significant differences in membrane phospholipid composition between these thermal groups and it is suggested that the differing cardinal growth temperatures characteristic of psychrophilic, mesophilic and thermophilic fungi reflect the temperature ranges over which these organisms exhibit levels of plasma membrane fluidity sufficient to maintain membrane-associated growth processes. In contrast, the membrane protein components appear uniform in both character and thermostability and are therefore unlikely to contribute to this phenomenon.