936 resultados para flame suppression
Resumo:
Movimentazione, da parte di un braccio robotico, di un recipiente riempito con un liquido nello spazio tridimensionale. Sistema di trasferimento liquidi basato sul KUKA youBot, piattaforma open source per la ricerca scientifica. Braccio robotico a 5 gradi di libertà con struttura ortho-parallel e cinematica risolvibile in forma chiusa tramite l’applicazione di Pieper. Studio dei modi di vibrare dei liquidi e modellizzazione dei fenomeni ondosi tramite modello equivalente di tipo pendolo. Analisi delle metodologie di controllo di tipo feed-forward volte a sopprimere la risposta oscillatoria di un tipico sistema vibratorio. Filtraggio delle traiettorie di riferimento da imporre allo youBot, in modo tale da sopprimere le vibrazioni in uscita della massa d’acqua movimentata. Analisi e comparazione delle metodologie di input shaping e filtro esponenziale. Validazione sperimentale delle metodologie proposte implementandole sul manipolatore youBot. Misura dell’entità del moto ondoso basata su dati acquisiti tramite camera RGBD ASUS Xtion PRO LIVE. Algoritmo di visione per l’elaborazione offline dei dati acquisiti, con output l’andamento dell’angolo di oscillazione del piano interpolante la superficie del liquido movimentato.
Resumo:
The FIREDASS (FIRE Detection And Suppression Simulation) project is concerned with the development of fine water mist systems as a possible replacement for the halon fire suppression system currently used in aircraft cargo holds. The project is funded by the European Commission, under the BRITE EURAM programme. The FIREDASS consortium is made up of a combination of Industrial, Academic, Research and Regulatory partners. As part of this programme of work, a computational model has been developed to help engineers optimise the design of the water mist suppression system. This computational model is based on Computational Fluid Dynamics (CFD) and is composed of the following components: fire model; mist model; two-phase radiation model; suppression model and detector/activation model. The fire model - developed by the University of Greenwich - uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation conducted by SINTEF. The mist model - developed by the University of Greenwich - is a Lagrangian particle tracking procedure that is fully coupled to both the gas phase and the radiation field. The radiation model - developed by the National Technical University of Athens - is described using a six-flux radiation model. The suppression model - developed by SINTEF and the University of Greenwich - is based on an extinguishment crietrion that relies on oxygen concentration and temperature. The detector/ activation model - developed by Cerberus - allows the configuration of many different detector and mist configurations to be tested within the computational model. These sub-models have been integrated by the University of Greenwich into the FIREDASS software package. The model has been validated using data from the SINTEF/GEC test campaigns and it has been found that the computational model gives good agreement with these experimental results. The best agreement is obtained at the ceiling which is where the detectors and misting nozzles would be located in a real system. In this paper the model is briefly described and some results from the validation of the fire and mist model are presented.
Resumo:
Background: The role of temporary ovarian suppression with luteinizing hormone-releasing hormone agonists (LHRHa) in the prevention of chemotherapy-induced premature ovarian failure (POF) is still controversial. Our meta-analysis of randomized, controlled trials (RCTs) investigates whether the use of LHRHa during chemotherapy in premenopausal breast cancer patients reduces treatment-related POF rate, increases pregnancy rate, and impacts disease-free survival (DFS). Methods: A literature search using PubMed, Embase, and the Cochrane Library, and the proceedings of major conferences, was conducted up to 30 April 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) for POF (i.e. POF by study definition, and POF defined as amenorrhea 1 year after chemotherapy completion) and for patients with pregnancy, as well hazard ratios (HRs) and 95% CI for DFS, were calculated for each trial. Pooled analysis was carried out using the fixed- and random-effects models. Results: A total of 12 RCTs were eligible including 1231 breast cancer patients. The use of LHRHa was associated with a significant reduced risk of POF (OR 0.36, 95% CI 0.23-0.57; P < 0.001), yet with significant heterogeneity (I2 = 47.1%, Pheterogeneity = 0.026). In eight studies reporting amenorrhea rates 1 year after chemotherapy completion, the addition of LHRHa reduced the risk of POF (OR 0.55, 95% CI 0.41-0.73, P < 0.001) without heterogeneity (I2 = 0.0%, Pheterogeneity = 0.936). In five studies reporting pregnancies, more patients treated with LHRHa achieved pregnancy (33 versus 19 women; OR 1.83, 95% CI 1.02-3.28, P = 0.041; I2 = 0.0%, Pheterogeneity = 0.629). In three studies reporting DFS, no difference was observed (HR 1.00, 95% CI 0.49-2.04, P = 0.939; I2 = 68.0%, Pheterogeneity = 0.044). Conclusion: Temporary ovarian suppression with LHRHa in young breast cancer patients is associated with a reduced risk of chemotherapy-induced POF and seems to increase the pregnancy rate, without an apparent negative consequence on prognosis.
Resumo:
The reluctance of ammonia to be ignited easily and the necessity to advance the spark for optimum performance in combustion engines led to this investigation. Ionization gap techniques showed that long induction times and slow flame speed were both contributors to the observed phenomena. The most important factor in determining combustion characteristics of ammonia was found to be the extent of predissociation prior to attempted ignition. There was evidence from combustion gas analysis that NO + was the probable most abundant ion contributing to succesful application of the ionization gap techniques, and that the NO + was probably produced in the pyrolysis of ammonia rather than by equilibrium reactions. © 1967 Combustion Institute.
Resumo:
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70\% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
Resumo:
In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.
Resumo:
Two field experiments were carried out in Taveuni, Fiji to study the effects of mucuna (Mucuna pruriens) and grass fallow systems at 6 and 12 month durations on changes in soil properties (Experiment 1) and taro yields (Experiment 2). Biomass accumulation of mucuna fallow crop was significantly higher (P<0.05) than grass fallow crop at both 6 and 12 month durations. The longer fallow duration resulted in higher (P<0.05) total soil organic carbon, total soil nitrogen and earthworm numbers regardless of fallow type. Weed suppression in taro grown under mucuna was significantly greater (P<0.05) than under natural grass fallow. Taro grown under mucuna fallow significantly outyielded taro grown under grass fallow (11.8 vs. 8.8 t ha-1). Also, the gross margin of taro grown under mucuna fallow was 52% higher than that of taro grown under grass fallow. © ISHS.
Resumo:
Résumé : Une dysrégulation de la lipolyse des tissus adipeux peut conduire à une surexposition des tissus non-adipeux aux acides gras non-estérifiés (AGNE), qui peut mener à un certain degré de lipotoxicité dans ces tissus. La lipotoxicité constitue, par ailleurs, l’une des causes majeures du développement de la résistance à l’insuline et du diabète de type 2. En plus de ses fonctions glucorégulatrices, l’insuline a pour fonction d’inhiber la lipolyse et donc de diminuer les niveaux d’AGNE en circulation, prévenant ainsi la lipotoxicité. Il n’y a pas d’étalon d’or pour mesurer la sensibilité de la lipolyse à l’insuline. Le clamp euglycémique hyperinsulinémique constitue la méthode étalon d’or pour évaluer la sensibilité du glucose à l’insuline mais il est aussi utilisé pour mesurer la suppression de la lipolyse par l’insuline. Par contre, cette méthode est couteuse et laborieuse, et ne peut pas s’appliquer à de grandes populations. Il existe aussi des indices pour estimer la fonction antilipolytique de l’insuline dérivés de l’hyperglycémie provoquée par voie orale (HGPO), un test moins dispendieux et plus simple à effectuer à grande échelle. Cette étude vise donc à : 1) Étudier la relation entre les indices de suppressibilité des AGNE par l’insuline dérivés du clamp et ceux dérivés de l’HGPO; et 2) Déterminer laquelle de ces mesures corrèle le mieux avec les facteurs connus comme étant reliés à la dysfonction adipeuse : paramètres anthropométriques et indices de dysfonction métabolique. Les résultats montrent que dans le groupe de sujets étudiés (n=29 femmes, 15 témoins saines et 14 femmes avec résistance à l’insuline car atteintes du syndrome des ovaires polykystiques), certains indices de sensibilité à l’insuline pour la lipolyse dérivés de l’HGPO corrèlent bien avec ceux dérivés du clamp euglycémique hyperinsulinémique. Parmi ces indices, celui qui corrèle le mieux avec les indices du clamp et les paramètres anthropométriques et de dysfonction adipeuse est le T50[indice inférieur AGNE] (temps nécessaire pour diminuer de 50% le taux de base – à jeun – des AGNE). Nos résultats suggèrent donc que l’HGPO, facile à réaliser, peut être utilisée pour évaluer la sensibilité de la lipolyse à l’insuline. Nous pensons que la lipo-résistance à l’insuline peut être facilement quantifiée en clinique humaine.
Resumo:
A systematic study was conducted to elucidate the effects of acoustic perturbations on laminar diffusion line-flames and the conditions required to cause acoustically-driven extinction. Flames were produced from the fuels n-pentane, n-hexane, n-heptane, n-octane, and JP-8, using fuel-laden wicks. The wicks were housed inside of a burner whose geometry produced flames that approximated a two dimensional flame sheet. The acoustics utilized ranged in frequency between 30-50 Hz and acoustic pressures between 5-50 Pa. The unperturbed mass loss rate and flame height of the alkanes were studied, and they were found to scale in a linear manner consistent with Burke-Schumann. The mass loss rate of hexane-fueled flames experiencing acoustic perturbations was then studied. It was found that the strongest influence on the mass loss rate was the magnitude of oscillatory air movement experienced by the flame. Finally, acoustic perturbations were imposed on flames using all fuels to determine acoustic extinction criterion. Using the data collected, a model was developed which characterized the acoustic conditions required to cause flame extinction. The model was based on the ratio of an acoustic Nusselt Number to the Spalding B Number of the fuel, and it was found that at the minimum speaker power required to cause extinction this ratio was a constant. Furthermore, it was found that at conditions where the ratio was below this constant, a flame could still exist; at conditions where the ratio was greater than or equal to this constant, flame extinction always occurred.
Suppression of mucosal mastocytosis by infection with the intestinal nematode Nematospiroides dubius
Resumo:
Ultra-slow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.
Resumo:
High active antiretroviral therapy (HAART) can reduce plasma viremia to levels below the limit of detection, leading to adequate immune recovery and clinical stability in most HIV-1-infected patients. However, the virus persists in reservoirs, and free virions can be found in the plasma. We report here the case of an HIV-infected patient diagnosed in 1999, who exhibited good adherence to medication and HAART efficacy after multiple protocol changes. In this study, we describe the clinical features, chronological changes in HIV viral load and CD4+ T-cell count, and treatment outcomes of multiple combinations of antiretrovirals (ARV).The patient presented cycles of viral load during treatment ranging from undetectable, low, and intermediate HIV-1 RNA levels, to levels above the limits of quantification. A therapeutic regimen intensified with raltegravir (RAL) promoted constant depletion of HIV viral load and an increase in CD4+ T-cells. The report shows that enhanced HAART efficacy using RAL can reduce HIV viral load.