921 resultados para fire tolerant species
Resumo:
Bentonite is a preferred buffer and backfill material for deep geological disposal of high-level nuclear waste (HLW). Bentonite does not retain anions by virtue of its negatively charged basal surface. Imparting anion retention ability to bentonite is important to enable the expansive clay to retain long-lived I-129 (iodine-129; half-life = 16 million years) species that may escape from the HLW geological repository. Silver-kaolinite (AgK) material is prepared as an additive to improve the iodide retention capacity of bentonite. The AgK is prepared by heating kaolinite-silver nitrate mix at 400 degrees C to study the kaolinite influence on the transition metal ion when reacting at its dehydroxylation temperature. Thermo gravimetric-Evolved Gas Detection analysis, X-ray diffraction analysis, X-ray photo electron spectroscopy and electron probe micro analysis indicated that silver occurs as AgO/Ag2O surface coating on thermally reacting kaolinite with silver nitrate at 400 degrees C.
Resumo:
In recent times, several new species of amphibians have been described from India. Many of these discoveries are from biodiversity hotspots or from within protected areas. We undertook amphibian surveys in human dominated landscapes outside of protected areas in south western region of India between years 2013-2015. We encountered a new species of Microhyla which is described here as Microhyla laterite sp. nov. It was delimited using molecular, morphometric and bioacoustics comparisons. Microhyla laterite sp. nov. appears to be restricted to areas of the West coast of India dominated by laterite rock formations. The laterite rock formations date as far back as the Cretaceous-Tertiary boundary and are considered to be wastelands in-spite of their intriguing geological history. We identify knowledge gaps in our understanding of the genus Microhyla from the Indian subcontinent and suggest ways to bridge them.
Resumo:
Hitherto, electron transfer (ET) between redox proteins has been deemed to occur via donor-acceptor binding, and diffusible reactive species are considered as deleterious side-products in such systems. Herein, ET from cytochrome P450 reductase (CPR, an animal membrane flavoprotein) and horseradish peroxidase (HRP, a plant hemoprotein) to cytochrome c (Cyt c, a soluble animal hemoprotein) was probed under diverse conditions, using standard assays. ET in the CPR-Cyt c system was critically inhibited by cyanide and sub-equivalent levels of polar one-electron cyclers like copper ions, vitamin C/Trolox and superoxide dismutase. In the presence of lipids, inhibition was also afforded by amphipathic molecules vitamin E, palmitoyl-vitamin C and the membrane hemoprotein, cytochrome b(5). Such nonspecific inhibition (by diverse agents in both aqueous and lipid phases) indicated that electron transfer/relay was effected by small diffusible agents, whose lifetimes are shortened by the diverse radical scavengers. When CPR was retained in a dialysis membrane and Cyt c presented outside in free solution, ET was still observed. Further, HRP (taken at nM levels) catalyzed oxidation of a phenolic substrate was significantly inhibited upon the incorporation of sub-nM levels of Cyt c. The findings imply that CPR-Cyt c or HRP-Cyt c binding is not crucial for ET. Further, fundamental quantitative arguments (based on diffusion/collision) challenge the erstwhile protein-protein binding-assisted ET hypothesis. It is proven beyond reasonable doubt that mobile and diffusible electron carriers (ions and radicals) serve as ``redox-relay agents'' in the biological ET models/setup studied.