999 resultados para fine ferrite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The spatial distribution of individual plants within a population and the population’s genetic structure are determined by several factors, like dispersal, reproduction mode or biotic interactions. The role of interspecific interactions in shaping the spatial genetic structure of plant populations remains largely unknown. 2. Species with a common evolutionary history are known to interact more closely with each other than unrelated species due to the greater number of traits they share. We hypothesize that plant interactions may shape the fine genetic structure of closely related congeners. 3. We used spatial statistics (georeferenced design) and molecular techniques (ISSR markers) to understand how two closely related congeners, Thymus vulgaris (widespread species) and T. loscosii (narrow endemic) interact at the local scale. Specific cover, number of individuals of both study species and several community attributes were measured in a 10 × 10 m plot. 4. Both species showed similar levels of genetic variation, but differed in their spatial genetic structure. Thymus vulgaris showed spatial aggregation but no spatial genetic structure, while T. loscosii showed spatial genetic structure (positive genetic autocorrelation) at short distances. The spatial pattern of T. vulgaris’ cover showed significant dissociation with that of T. loscosii. The same was true between the spatial patterns of the cover of T. vulgaris and the abundance of T. loscosii and between the abundance of each species. Most importantly, we found a correlation between the genetic structure of T. loscosii and the abundance of T. vulgaris: T. loscosii plants were genetically more similar when they were surrounded by a similar number of T. vulgaris plants. 5. Synthesis. Our results reveal spatially complex genetic structures of both congeners at small spatial scales. The negative association among the spatial patterns of the two species and the genetic structure found for T. loscosii in relation to the abundance of T. vulgaris indicate that competition between the two species may account for the presence of adapted ecotypes of T. loscosii to the abundance of a competing congeneric species. This suggests that the presence and abundance of close congeners can influence the genetic spatial structure of plant species at fine scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistence and abundance of species is determined by habitat availability and the ability to disperse and colonize habitats at contrasting spatial scales. Favourable habitat fragments are also heterogeneous in quality, providing differing opportunities for establishment and affecting the population dynamics of a species. Based on these principles, we suggest that the presence and abundance of epiphytes may reflect their dispersal ability, which is primarily determined by the spatial structure of host trees, but also by host quality. To our knowledge there has been no explicit test of the importance of host tree spatial pattern for epiphytes in Mediterranean forests. We hypothesized that performance and host occupancy in a favourable habitat depend on the spatial pattern of host trees, because this pattern affects the dispersal ability of each epiphyte and it also determines the availability of suitable sites for establishment. We tested this hypothesis using new point pattern analysis tools and generalized linear mixed models to investigate the spatial distribution and performance of the epiphytic lichen Lobaria pulmonaria, which inhabits two types of host trees (beeches and Iberian oaks). We tested the effects on L. pulmonaria distribution of tree size, spatial configuration, and host tree identity. We built a model including tree size, stand structure, and several neighbourhood predictors to understand the effect of host tree on L. pulmonaria. We also investigated the relative importance of spatial patterning on the presence and abundance of the species, independently of the host tree configuration. L. pulmonaria distribution was highly dependent on habitat quality for successful establishment, i.e., tree species identity, tree diameter, and several forest stand structure surrogates. For beech trees, tree diameter was the main factor influencing presence and cover of the lichen, although larger lichen-colonized trees were located close to focal trees, i.e., young trees. However, oak diameter was not an important factor, suggesting that bark roughness at all diameters favoured lichen establishment. Our results indicate that L. pulmonaria dispersal is not spatially restricted, but it is dependent on habitat quality. Furthermore, new spatial analysis tools suggested that L. pulmonaria cover exhibits a distinct pattern, although the spatial pattern of tree position and size was random.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives: We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods: To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16x16 km2. In a second step, we used the concentration-response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005-2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results: Our model suggested that there would be a mean overall reduction in fine particle levels of 1mg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions: Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline infine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Premise of the study: The presence of compatible fungi is necessary for epiphytic orchid recruitment. Thus, identifying associated mycorrhizal fungi at the population level is essential for orchid conservation. Recruitment patterns may also be conditioned by factors such as seed dispersal range and specific environmental characteristics. • Methods: In a forest plot, all trees with a diameter at breast height >1 cm and all individuals of the epiphytic orchid Epidendrum rhopalostele were identified and mapped. Additionally, one flowering individual of E. rhopalostele per each host tree was randomly selected for root sampling and DNA extraction. • Key results: A total of 239 E. rhopalostele individuals were located in 25 of the 714 potential host trees. Light microscopy of sampled roots showed mycorrhizal fungi in 22 of the 25 sampled orchids. Phylogenetic analysis of ITS1-5.8S-ITS2 sequences yielded two Tulasnella clades. In four cases, plants were found to be associated with both clades. The difference between univariate and bivariate K functions was consistent with the random labeling null model at all spatial scales, indicating that trees hosting clades A and B of Tulasnella are not spatially segregated. The analysis of the inhomogenous K function showed that host trees are not clustered, suggesting no limitations to population-scale dispersal. χ2 analysis of contingency tables showed that E. rhopalostele is more frequent on dead trees than expected. • Conclusions: Epidendrum rhopalostele establishes mycorrhizal associations with at least two different Tulasnella species. The analysis of the distribution patterns of this orchid suggests a microsite preference for dead trees and no seed dispersal limitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the extent to which hippocampal synapses are typical of those found in other cortical regions, we have carried out a quantitative analysis of olfactory cortical excitatory synapses, reconstructed from serial electron micrograph sections of mouse brain, and have compared these new observations with previously obtained data from hippocampus. Both superficial and deep layer I olfactory cortical synapses were studied. Although individual synapses in each of the areas—CA1 hippocampus, olfactory cortical layer Ia, olfactory cortical area Ib—might plausibly have been found in any of the other areas, the average characteristics of the three synapse populations are distinct. Olfactory cortical synapses in both layers are, on average, about 2.5 times larger than their hippocampal counterparts. The layer Ia olfactory cortical synapses have fewer synaptic vesicles than do the layer Ib synapses, but the absolute number of vesicles docked to the active zone in the layer Ia olfactory cortical synapses is about equal to the docked vesicle number in the smaller hippocampal synapses. As would be predicted from studies on hippocampus that relate paired-pulse facilitation to the number of docked vesicles, the synapses in layer 1a exhibit facilitation, whereas the ones in layer 1b do not. Although hippocampal synapses provide as a good model system for central synapses in general, we conclude that significant differences in the average structure of synapses from one cortical region to another exist, and this means that generalizations based on a single synapse type must be made with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements Gokul Gopalan (a Senior Global Medical Director [Respiratory], at Teva Pharmaceuticals, Frazer, PA, US, at the time of this study), assisted with study design. Funding Funds to acquire the dataset from the Pharmo Institute for Drug Outcomes Research (Utrecht, the Netherlands) were provided by RiRL. The study received institutional support from Teva Pharmaceuticals Europe B.V. Gokul Gopalan, a Senior Global Medical Director (Respiratory), at Teva Pharmaceuticals, Frazer, PA, US, at the time of this study, assisted with study design, but neither Teva Pharmaceuticals Europe B.V. nor Teva Pharmaceuticals, Frazer, PA, US, contributed, either in part or in whole, to the collection, analysis, or interpretation of study data, manuscript writing, or the decision to submit the manuscript for publication. Erratum The original version of this article unfortunately contained errors that have since been corrected. The word “pharmo” has been fully capitalised to “PHARMO” throughout the article. The reference to Table 2 in the first and second sentence under the Outcomes heading has been replaced with Fig. 3. Under the Abbreviations heading ‘extrafine-particle’ was repeated, this has been corrected to ‘EF-HFA-BDP [Qvar®]: extrafine-particle hydrofluoroalkane beclomethasone dipropionate’. The competing interests of Nicolas Roche and Theresa Guibert have been amended. Academic affiliations for Dirkje S. Postma (2), Richard J. Martin (3), Ron M.C. Herrings (4), Jetty Overbeek (4), and Nicolas Roche (7) have been corrected. Figure 3 in the online and pdf version did not match, this been amended

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements James J. Waggitt was funded by a NERC Case studentship supported by OpenHydro Ltd and Marine Scotland Science (NE/J500148/1). Vessel-based transects were funded by a NERC (NE/J004340/1) and a Scottish National Heritage (SNH) grant. FVCOM modelling was funded by a NERC grant (NE/J004316/1). Marine Scotland Science provided time on the FRV Alba-na-Mara as part as the Marine Collaboration Research Forum (MarCRF). The bathymetry data used in hydrodynamic models (HI 1122 Sanday Sound to Westray Firth) was collected by the Maritime & Coastguard Agency (MCA) as part of the UK Civil Hydrography Programme. We wish to thank Christina Bristow, Matthew Finn and Jennifer Norris at the European Marine Energy Centre (EMEC); Marianna Chimienti, Ciaran Cronin, Tim Sykes and Stuart Thomas for performing vessel-based transects; Marine Scotland Science staff Eric Armstrong, Ian Davies, Mike Robertson, Robert Watret and Michael Stewart for their assistance; Shaun Fraser, Pauline Goulet, Alex Robbins, Helen Wade and Jared Wilson for invaluable discussions; Thomas Cornulier, Alex Douglas, James Grecian and Samantha Patrick for their help with statistical analysis; and Gavin Siriwardena, Leigh Torres, Mark Whittingham and Russell Wynn for their constructive comments on earlier versions of this manuscript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increasing interest in the effects of elevated atmospheric CO2 on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO2. Our research shows that elevated CO2 produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO2-dosing technologies were examined. Growth in elevated CO2 increased numbers of mitochondria per unit cell area by 1.3–2.4 times the number in control plants grown in lower CO2 and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO2 treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO2 effect on mitochondrial number, elevated CO2 promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO2 concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.