999 resultados para fertilisation success


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with an intermediate diet. Egg size, clutch asymmetry and hatching dates varied between species and years without consistent patterns. In the south polar skuas, 12 to 38% of the variation in these parameters was explained by sea surface temperature, sea ice cover and local weather. In mixed species pairs and brown skuas, the influence of environmental factors on variation in clutch asymmetry and hatching date decreased to 10-29%, and no effect on egg size was found. Annual variation in offspring growth performance also differed between species with variable growth in chicks of south polar skuas and mixed species pairs, and almost uniform growth in brown skuas. Additionally, the dependency on oceanographic and climatic factors, especially local wind conditions, decreased from south polar skuas to brown skua chicks. Consistent in all species, offspring were more sensitive to environmental conditions during early stages; during the late chick stage (>33 d) chick growth was almost independent of environmental conditions. The net breeding success could not be predicted by any environmental factor in any skua species, suggesting it may not be a sensitive indicator of environmental conditions. Hence, the sensitivity of skuas to environmental conditions varied between species, with south polar skuas being more sensitive than brown skuas, and between breeding periods, with the egg parameters being more susceptible to oceanographic conditions. However, during offspring development, local climatic conditions became more important. We conclude that future climate change in the Maritime Antarctic will affect reproduction of skuas more strongly through changes in sea ice cover and sea surface temperature (and the resulting alterations to the marine food web) than through local weather conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 µatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 µatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian ecosystem services such as the suppression of pests are considered being of high ecological and economic importance in a range of ecosystems, especially in tropical agroforestry. But how bird predation success is related to the diversity and composition of the bird community, as well as local and landscape factors, is poorly understood. The author quantified arthropod predation in relation to the identity and diversity of insectivorous birds, using experimental exposure of artificial, caterpillar-like prey on smallholder cacao agroforestry systems, differing in local shade management and distance to primary forest. The bird community was assessed using both mist netting (targeting on active understory insectivores) and point count (higher completeness of species inventories) sampling. The study was conducted in a land use dominated area in Central Sulawesi, Indonesia, adjacent to the Lore Lindu National Park. We selected 15 smallholder cacao plantations as sites for bird and bat exclosure experiments in March 2010. Until July 2011, we recorded several data in this study area, including the bird community data, cacao tree data and bird predation experiments that are presented here. We found that avian predation success can be driven by single and abundant insectivorous species, rather than by overall bird species richness. Forest proximity was important for enhancing the density of this key species, but did also promote bird species richness. The availability of local shade trees had no effects on the local bird community or avian predation success. Our findings are both of economical as well as ecological interest because the conservation of nearby forest remnants will likely benefit human needs and biodiversity conservation alike.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substantial variations are reported for egg production and hatching rates of copepods exposed to elevated carbon dioxide concentrations (pCO2). One possible explanation, as found in other marine taxa, is that prior parental exposure to elevated pCO2 (and/or decreased pH) affects reproductive performance. Previous studies have adopted two distinct approaches, either (1) expose male and female copepoda to the test pCO2/pH scenarios, or (2) solely expose egg-laying females to the tests. Although the former approach is more realistic, the majority of studies have used the latter approach. Here, we investigated the variation in egg production and hatching success of Acartia tonsa between these two experimental designs, across five different pCO2 concentrations (385-6000 µatm pCO2). In addition, to determine the effect of pCO2 on the hatching success with no prior parental exposure, eggs produced and fertilized under ambient conditions were also exposed to these pCO2 scenarios. Significant variations were found between experimental designs, with approach (1) resulting in higher impacts; here >20% difference was seen in hatching success between experiments at 1000 µatm pCO2 scenarios (2100 year scenario), and >85% at 6000 µatm pCO2. This study highlights the potential to misrepresent the reproductive response of a species to elevated pCO2 dependent on parental exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.