1000 resultados para fenbutatin-oxide
Resumo:
A new compound Ce(6-x)Ln(x)MoO(15-delta) has been synthesized by wet-chemistry method. Their crystal structure and oxide ionic conductivity were characterized by powder X-ray diffraction, Raman, IR spectrum and A.C. impedance technique. The XRD results showed that Ce6MO15-delta, Ce(5)LnMoO(15-delta) have cubic symmetry with Fm3m space group. The refined lattice parameters showed that their lattice constants decrease with the decrease of the ionic radius of Ln(3+). The electrochemical measurements showed that the ionic conductivity of resulting oxides Ce(6-x)Ln(x)MoO(15-delta) have an enhance, which may be a kind of promising material for SOFCs.
Resumo:
Thiophene copolymers and their derivatives with poly(ethylene oxide) side chains were synthesized. The starting monomers were 3-hexylthiophene and 2-(3-thienyl) ethanol with poly(ethylene oxide) grafted to the side chains. New functionalized polythiophenes were prepared by both chemical oxidation with FeCl3 and electropolymerization. The conjugating polymers were characterized. The structures of the polythiophene derivatives agreed with the design.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), -assisted melt free-radical grafting of maleic anhydride (MAH) on isotactic-polypropylene (i-PP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 into reactive system leads to an enhancement of the grafting degree of MAH, along with an elevated degradation of i-PP matrix. When Nd2O3 content is 4.5 mmol %, the increment of the grafting degree of MAH (maximally) is up to about 30% compared with that of the related system without adding Nd2O3, while the severest degradation of i-PP matrix simultaneously occurs. On the basis of the reaction mechanism of PP-g-MAH proposed before, the sequence of beta-scission and grafting reaction is discussed in detail. It is found that, for the reactive system studied, most tertiary macroradicals first undergo beta-scission, and then, grafting reaction with MAH takes place at the new radical chain ends. The imported Nd2O3 has no effect on the aforementioned reaction mechanism, whereas it enhances the initiating efficiency of the initiator, dicumyl peroxide (DCP).
Resumo:
The synergistic extraction of rare earths (La, Nd, Gd, Y and Yb) with a mixture of 2-ethylhexyl 2-ethylhexylphosphonate (EHEHPA) (HA) and trialkylphosphine oxide (Cyanex 923) (B) from a hydrochloride medium was investigated. The mixed system significantly enhances the extraction efficiency for lighter lanthanides and the synergistic enhancement coefficients for La (4.52), Nd (3.35), Gd (2.08), Y (1.31) and Yb (1.08) decrease with decreasing ionic radius of the rare earths. The extraction equilibrium of La, Nd and Gd indicate that La and Nd were extracted as MA(3)(.)B, whereas Gd was extracted as Gd(OH)A(2)(HA)(2)B-.. The equilibrium constants, thermodynamic functions such as Delta G, Delta H and Delta S and formation constants of the extracted species were determined. The stripping properties were also studied.
Resumo:
A new oxide ion conductor, La3GaMo2O12, with a bulk conductivity of 2.7 X 10(-2) S.cm(-1) at 800 degrees C in air atmosphere was prepared by the traditional solid-state reaction. The room temperature X-ray diffraction data could be indexed on a monoclinic cell with lattice parameters of a=0.5602(2) nm, b=0.3224(1) nm, c= 1.5741(1) nm, beta= 102.555(0)degrees, V=0.2775(2) nm(3) and space group Pc(7). Ac impedance measurements in various atmospheres further support that it is an oxide ion conductor. This material was stable in various atmospheres with oxygen partial pressure P(O-2) ranging from 1.0 X 10(5) to 1.0 X 10(-7) Pa at 800 degrees C. A reversible polymorphic phase transition occurred at elevated temperatures as confirmed by the differential thermal analysis and dilatometric measurement.
Resumo:
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indium-tin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.
Resumo:
A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.
Resumo:
The experimental data of phase diagrams for both polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) binary and toluene/polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) ternary polymer-containing systems was obtained at atmosphere pressure by light scattering method. The critical points for some pre-selected compositions and the pressure effect on the phase transition behavior of ternary system were investigated by turbidity measurements. The chosen system is a mixture of ternary which is one of the very few abnormal polymer-containing systems exhibiting pressure-induced both miscibility and immiscibility. This unusual behavior is related to the toluene concentration in the mixtures. The effect of toluene on the phase transition behavior of the ternary polymer-containing mixture was traced. Such behavior can make it possible to process composite materials from incompatible polymers.
Resumo:
This paper describes an indium tin oxide (ITO) electrode-based Ru(bPY)(3)(2+) electrochemiluminecence (ECL) detector for a microchip capillary electrophoresis (CE). The microchip CE-ECL system described in this article consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate with an ITO electrode fabricated by a photolithographic method. The PDMS layer was reversibly bound to the ITO electrode plate, which greatly simplified the alignment of the separation channel with the working electrode and enhanced the photon-capturing efficiency. In our study, the high separation electric field had no significant influence on the ECL detector, and decouplers for isolating the separation electric field were not needed in the microchip CE-ECL system. The ITO electrodes employed in the experiments displayed good durability and stability in the analytical procedures. Proline was selected to perform the microchip device with a limit of detection of 1.2 muM (S/N = 3) and a linear range from 5 to 600 muM.
Resumo:
Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.
Resumo:
Copolymerization of carbon dioxide and propylene oxide was carried out employing (RC6H4COO)(3)Y/glycerin/ZnEt2 (R = -H, -CH3, NO2, -OH) ternary catalyst systems. The feature of yttrium carboxylates (ligand, substituent and its position on the aromatic ring) is of great importance in the final copolymerization. Appropriate design of substituent and position of the ligand in benzoate-based yttrium complex can adjust the microstructure of aliphatic polycarbonate in a moderate degree, where the head-to-tail linkage in the copolymer is adjustable from 68.4 to 75.4%. The steric factor of the ligand in the yttrium complex is crucial for the molecular weight distribution of the copolymer, probably due to the fact that the substituent at 2 and 4-position would disturb the coordination or insertion of the monomer, lead the copolymer with broad molecular distribution. Based on the study of ultraviolet-visible spectra of the ternary catalyst in various solvents, it seems that the absorption band at 240-255 nm be closely related to the active species of the rare earth ternary catalysts.
Resumo:
The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst, It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)(3), ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 degreesC in a 8 h reaction period.
Resumo:
The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.