958 resultados para elektronische Komponenten


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminated sediments spanning the last 20,000 years (though not continuously) in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed microscopically and with backscattered electron imagery in order to determine laminae composition with emphasis on the diatomaceous component. Based on this detailed study, we present schematic models to propose paleoflux scenarios for laminae formation at different time-slices. The investigated core (GeoB 5836-2; 26°12.61'N, 35°21.56'E; water depth 1475 m) shows light and dark alternating laminae that are easily distinguishable in the mid-Holocene and at the end of the deglaciation (13-15 ka) period. Light layers are mainly composed of coccoliths, terrigenous material and diatom fragments, while dark layers consist almost exclusively of diatom frustules (monospecific or mixed assemblages). The regularity in the occurrence of coccolith/diatom couplets points to an annual deposition cycle where contrasting seasons and associated plankton blooms are represented (diatoms-fall/winter deposition, coccoliths-summer signal). We propose that, for the past ~15,000 years, the laminations represent two-season annual varves. Strong dissolution of carbonate, with the concomitant loss of the coccolith-rich layer in sediments older than 15 ka, prevents us from presenting a schematic model of annual deposition. However, the diatomaceous component reveals a marked switch in species composition between Last Glacial Maximum (LGM) sediments (dominated by Chaetoceros resting spores) and sediments somewhat younger (18-19 ka; dominated by Rhizosolenia). We propose that different diatom assemblages reflect changing conditions in stratification in the northern Red Sea: Strong stratification conditions, such as during two meltwater pulses at 14.5 and 11.4 ka, are reflected in the sediment by Rhizosolenia layers, while Chaetoceros-dominated assemblages represent deep convection conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (delta18O(shell)) of five planktic foraminiferal species. Both the delta18O(shell) and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average delta18O(shell) of G. ruber (w) from surface sediments is similar to the delta18O(shell) values measured from the sediment-trap samples during winter. However, the delta18O(shell) of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in delta18O(shell) values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their delta18O(shell).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sources and dominant assimilation processes of the phytoplanktonic community. In this study we report results from combined compound-specific radiocarbon and stable carbon and nitrogen isotope analysis to examine the time-scales of synthesis and fate of chlorophyll-a and its degradation products pheophytin-a, pyropheophytin-a, and 132,173-cyclopheophorbide-a-enol until burial in Black Sea core-top sediments. The pigments are mainly of marine phytoplanktonic origin as implied by their stable isotopic compositions. Pigment ?15N values indicate nitrate as the major uptake substrate but 15N-depletion towards the open marine setting indicates either contribution from N2-fixation or direct uptake of ammonium from deeper waters. Radiocarbon concentrations translate into minimum and maximum pigment ages of approximately 40 to 1200 years. This implies that protective mechanisms against decomposition such as association with minerals, storage in deltaic anoxic environments, or eutrophication-induced hypoxia and light limitation are much more efficient than previously thought. Moreover, seasonal variations of nutrient source, growth period, and habitat and their associated isotopic variability are likely at least as strong as long-term trends. Combined triple isotope analysis of sedimentary chlorophyll and its primary derivatives is a powerful tool to delineate biogeochemical and diagenetic processes in the surface water and sediments, and to assess their precise time-scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terrigenous fraction of seabed sediments recovered along the north-west African continental margin illustrates spatial variability in grain size attributed to different transport mechanisms. Three subpopulations are determined from the grain-size analyses (n = 78) of the carbonate-free silt fraction applying an end-member modelling algorithm (G. J. Weltje, 1997). The two coarsest end-members are interpreted as representing aeolian dust, and the fine-grained end-member is related to fluvial supply. The end-member model thus allows aeolian fallout to be distinguished from fluvial-sourced mud in this area. The relative contributions of the end-members show distinct regional variations that can be related to different transport processes and pathways. Understanding present-day sediment dispersal and mixing is important for a better understanding of older sedimentary records and palaeoclimate reconstructions in the region.