993 resultados para electrochemical heterogeneity
Resumo:
Chemical sensors have growing interest in the determination of food additives, which are creating toxicity and may cause serious health concern, drugs and metal ions. A chemical sensor can be defined as a device that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytically useful signal. The chemical information may be generated from a chemical reaction of the analyte or from a physical property of the system investigated. Two main steps involved in the functioning of a chemical sensor are recognition and transduction. Chemical sensors employ specific transduction techniques to yield analyte information. The most widely used techniques employed in chemical sensors are optical absorption, luminescence, redox potential etc. According to the operating principle of the transducer, chemical sensors may be classified as electrochemical sensors, optical sensors, mass sensitive sensors, heat sensitive sensors etc. Electrochemical sensors are devices that transform the effect of the electrochemical interaction between analyte and electrode into a useful signal. They are very widespread as they use simple instrumentation, very good sensitivity with wide linear concentration ranges, rapid analysis time and simultaneous determination of several analytes. These include voltammetric, potentiometric and amperometric sensors. Fluorescence sensing of chemical and biochemical analytes is an active area of research. Any phenomenon that results in a change of fluorescence intensity, anisotropy or lifetime can be used for sensing. The fluorophores are mixed with the analyte solution and excited at its corresponding wavelength. The change in fluorescence intensity (enhancement or quenching) is directly related to the concentration of the analyte. Fluorescence quenching refers to any process that decreases the fluorescence intensity of a sample. A variety of molecular rearrangements, energy transfer, ground-state complex formation and collisional quenching. Generally, fluorescence quenching can occur by two different mechanisms, dynamic quenching and static quenching. The thesis presents the development of voltammetric and fluorescent sensors for the analysis of pharmaceuticals, food additives metal ions. The developed sensors were successfully applied for the determination of analytes in real samples. Chemical sensors have multidisciplinary applications. The development and application of voltammetric and optical sensors continue to be an exciting and expanding area of research in analytical chemistry. The synthesis of biocompatible fluorophores and their use in clinical analysis, and the development of disposable sensors for clinical analysis is still a challenging task. The ability to make sensitive and selective measurements and the requirement of less expensive equipment make electrochemical and fluorescence based sensors attractive.
Resumo:
Resumen tomado de la publicaci??n
Vignettes and self-reported work disability in the United States: Correction of report heterogeneity
Resumo:
Subjective measures of health tend to suffer from bias given by reporting heterogeneity. however, some methodologies are used to correct the bias in order to compare self-assessed health for respondents with different sociodemographic characteristics. One of the methods to correct this is the hierarchical ordered probit (hopit), which includes rates of vignettes -hypothetical individuals with a fixed health state- and where two assumptions have to be fulfilled, vignette equivalence and response consistency. this methodology is used for the self-reported work disability for a sample of the united states for 2011. The results show that even though sociodemographic variables influence rating scales, adjusting for this does not change their effect on work disability, which is only influenced by income. the inclusion of variables related with ethnicity or place of birth does not influence the true work disability. however, when only one of them is excluded, it becomes significant and affects the true level of work disability as well as income.
Resumo:
We offer a new explanation of partial risk sharing based on coalition formation and segmentation of society in a risky environment, without assuming limited commitment and imperfect information. Heterogenous individuals in a society freely choose with whom they will share risk. A partition belonging to the core of the membership game obtains. Perfect risk sharing does not necessarily arise. Focusing on mutual insurance rule and assuming that individuals only differ with respect to risk, we show that the core partition is homophily-based. The distribution of risk affects the number and size of these coalitions. Individuals may pay a lower risk premium in riskier societies. A higher heterogeneity in risk leads to a lower degree of risk sharing. We discuss how the endogenous partition of society into risk-sharing coalitions may shed light on empirical evidence on partial risk sharing. The case of heterogenous risk aversion leads to similar results.
Resumo:
Resumen basado en el de la publicación
Resumo:
Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.
Resumo:
The s–x model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.
Resumo:
A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).
Resumo:
1. The spatial and temporal abundance of the aphid Euceraphis betulae was investigated in relation to heterogeneity in host plant ( Betula pendula) vigour and pathogenic stress. The performance of aphids feeding on vigorous and stressed foliage was also examined. 2. The plant stress and plant vigour hypotheses have been suggested as opposing ways in which foliage quality influences herbivore abundance. In many plants, however, vigorous growing foliage co-exists with stressed or damaged foliage. 3. There was a negative correlation between branch growth ( vigour) and branch stress ( leaf chlorosis), with the most vigorous branches displaying little or no stress, and the most stressed branches achieving poor growth. There was a similar negative correlation between vigour and stress at the level of individual trees, which themselves represented a continuum in quality. 4. At the beginning of the season, E. betulae were intermittently more abundant on vigorous branches than on branches destined to become stressed, but aphids became significantly more abundant on stressed branches later in the season, when symptoms of stress became apparent. Similar patterns of aphid abundance were seen on vigorous and stressed trees in the following year. 5. Euceraphis betulae performance was generally enhanced when feeding on naturally stressed B. pendula leaves, but there was some evidence for elevated potential reproduction when feeding on vigorous leaves too. 6. Overall, plant stress probably influences E. betulae distribution more than plant vigour, but the temporal and spatial variability in plant quality suggests that plant vigour could play a role in aphid distribution early in the season.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture–recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture–recapture models. Alternative methods, still under the capture–recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture–recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao’s lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates—in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
In this paper we present results from two choice experiments (CE), designed to take account of the different negative externalities associated with pesticide use in agricultural production. For cereal production, the most probable impact of pesticide use is a reduction in environmental quality. For fruit and vegetable production, the negative externality is on consumer health. Using latent class models we find evidence of the presence of preference heterogeneity in addition to reasonably high willingness to pay (WTP) estimates for a reduction in the use of pesticides for both environmental quality and consumer health. To place our WTP estimates in a policy context we convert them into an equivalent pesticide tax by type of externality. Our tax estimates suggest that pesticide taxes based on the primary externality resulting from a particular mode of agricultural production are a credible policy option that warrants further consideration.