963 resultados para ecologically adaptive strategies
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
The problem addressed is one of model reference adaptive control (MRAC) of asymptotically stable plants of unknown order with zeros located anywhere in the s-plane except at the origin. The reference model is also asymptotically stable and lacking zero(s) at s = 0. The control law is to be specified only in terms of the inputs to and outputs of the plant and the reference model. For inputs from a class of functions that approach a non-zero constant, the problem is formulated in an optimal control framework. By successive refinements of the sub-optimal laws proposed here, two schemes are finally design-ed. These schemes are characterized by boundedness, convergence and optimality. Simplicity and total time-domain implementation are the additional striking features. Simulations to demonstrate the efficacy of the control schemes are presented.
Resumo:
An adaptive optimization algorithm using backpropogation neural network model for dynamic identification is developed. The algorithm is applied to maximize the cellular productivity of a continuous culture of baker's yeast. The robustness of the algorithm is demonstrated in determining and maintaining the optimal dilution rate of the continuous bioreactor in presence of disturbances in environmental conditions and microbial culture characteristics. The simulation results show that a significant reduction in time required to reach optimal operating levels can be achieved using neural network model compared with the traditional dynamic linear input-output model. The extension of the algorithm for multivariable adaptive optimization of continuous bioreactor is briefly discussed.
Resumo:
Exothermic interactions like hydrogen bonding, ionic and charge transfer, etc., and ''copolymer effect'' are commonly used to induce miscibility in immiscible blends. The efficacy of these methods in promoting miscibility in poly(benzyl methacrylate) (PBMA)-polystyrene (PS) immiscible blends has been studied by suitably modifying the structure of the component polymers. It has been found that hydrogen bonding approach is most advantageous among these approaches as it involves the need for minimum interacting sites. It has also been shown that these results can be extended to the blends of poly(acrylate)s or poly(methacrylate)s with PS. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Diabetes is a long-term disease during which the body's production and use of insulin are impaired, causing glucose concentration level to increase in the bloodstream. Regulating blood glucose levels as close to normal as possible leads to a substantial decrease in long-term complications of diabetes. In this paper, an intelligent online feedback-treatment strategy is presented for the control of blood glucose levels in diabetic patients using single network adaptive critic (SNAC) neural networks (which is based on nonlinear optimal control theory). A recently developed mathematical model of the nonlinear dynamics of glucose and insulin interaction in the blood system has been revised and considered for synthesizing the neural network for feedback control. The idea is to replicate the function of pancreatic insulin, i.e. to have a fairly continuous measurement of blood glucose and a situation-dependent insulin injection to the body using an external device. Detailed studies are carried out to analyze the effectiveness of this adaptive critic-based feedback medication strategy. A comparison study with linear quadratic regulator (LQR) theory shows that the proposed nonlinear approach offers some important advantages such as quicker response, avoidance of hypoglycemia problems, etc. Robustness of the proposed approach is also demonstrated from a large number of simulations considering random initial conditions and parametric uncertainties. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This work describes an online handwritten character recognition system working in combination with an offline recognition system. The online input data is also converted into an offline image, and parallely recognized by both online and offline strategies. Features are proposed for offline recognition and a disambiguation step is employed in the offline system for the samples for which the confidence level of the classifier is low. The outputs are then combined probabilistically resulting in a classifier out-performing both individual systems. Experiments are performed for Kannada, a South Indian Language, over a database of 295 classes. The accuracy of the online recognizer improves by 11% when the combination with offline system is used.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
The use of delayed coefficient adaptation in the least mean square (LMS) algorithm has enabled the design of pipelined architectures for real-time transversal adaptive filtering. However, the convergence speed of this delayed LMS (DLMS) algorithm, when compared with that of the standard LMS algorithm, is degraded and worsens with increase in the adaptation delay. Existing pipelined DLMS architectures have large adaptation delay and hence degraded convergence speed. We in this paper, first present a pipelined DLMS architecture with minimal adaptation delay for any given sampling rate. The architecture is synthesized by using a number of function preserving transformations on the signal flow graph representation of the DLMS algorithm. With the use of carry-save arithmetic, the pipelined architecture can support high sampling rates, limited only by the delay of a full adder and a 2-to-1 multiplexer. In the second part of this paper, we extend the synthesis methodology described in the first part, to synthesize pipelined DLMS architectures whose power dissipation meets a specified budget. This low-power architecture exploits the parallelism in the DLMS algorithm to meet the required computational throughput. The architecture exhibits a novel tradeoff between algorithmic performance (convergence speed) and power dissipation. (C) 1999 Elsevier Science B.V. All rights resented.
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
Two regiospecific modifications have been developed in the synthesis of valeranone. The first one is based on the regiospecific protection of a diol and the second is based on the Wittig reaction of a hemiacetal.
Resumo:
We develop an optimal, distributed, and low feedback timer-based selection scheme to enable next generation rate-adaptive wireless systems to exploit multi-user diversity. In our scheme, each user sets a timer depending on its signal to noise ratio (SNR) and transmits a small packet to identify itself when its timer expires. When the SNR-to-timer mapping is monotone non-decreasing, timers of users with better SNRs expire earlier. Thus, the base station (BS) simply selects the first user whose timer expiry it can detect, and transmits data to it at as high a rate as reliably possible. However, timers that expire too close to one another cannot be detected by the BS due to collisions. We characterize in detail the structure of the SNR-to-timer mapping that optimally handles these collisions to maximize the average data rate. We prove that the optimal timer values take only a discrete set of values, and that the rate adaptation policy strongly influences the optimal scheme's structure. The optimal average rate is very close to that of ideal selection in which the BS always selects highest rate user, and is much higher than that of the popular, but ad hoc, timer schemes considered in the literature.
Resumo:
With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman-Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of similar to 88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA(+) in > 80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient `sequence-based' structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/.
Resumo:
Strategies for efficient start-up of a continuous process for biooxidation of refractory gold ore and concentrate obtained from Hutti, Gold Mines Limited (HGML), India are discussed in this work. The biooxidation of the concentrate at high pulp density (10%) with wild strain of Thiobacillus ferrooxidans isolated from HGML mines is characterized by significant lag phase (20 days) and incomplete oxidation (35%) even after prolonged operation (60 days). Two strategies, biooxidation with concentrate adapted cells and a step leaching strategy, in which the pulp density is progressively increased from 2% to 10% were considered and the latter resulted in efficient biooxidation of concentrate. Conversion of such a process from batch to continuous operation is shown to result in complete biooxidation of the concentrate and gold extraction efficiency in excess of 90%. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Model Reference Adaptive Control (MRAC) of a wide repertoire of stable Linear Time Invariant (LTI) systems is addressed here. Even an upper bound on the order of the finite-dimensional system is unavailable. Further, the unknown plant is permitted to have both minimum phase and nonminimum phase zeros. Model following with reference to a completely specified reference model excited by a class of piecewise continuous bounded signals is the goal. The problem is approached by taking recourse to the time moments representation of an LTI system. The treatment here is confined to Single-Input Single-Output (SISO) systems. The adaptive controller is built upon an on-line scheme for time moment estimation of a system given no more than its input and output. As a first step, a cascade compensator is devised. The primary contribution lies in developing a unified framework to eventually address with more finesse the problem of adaptive control of a large family of plants allowed to be minimum or nonminimum phase. Thus, the scheme presented in this paper is confined to lay the basis for more refined compensators-cascade, feedback and both-initially for SISO systems and progressively for Multi-Input Multi-Output (MIMO) systems. Simulations are presented.
Resumo:
As computational Grids are increasingly used for executing long running multi-phase parallel applications, it is important to develop efficient rescheduling frameworks that adapt application execution in response to resource and application dynamics. In this paper, three strategies or algorithms have been developed for deciding when and where to reschedule parallel applications that execute on multi-cluster Grids. The algorithms derive rescheduling plans that consist of potential points in application execution for rescheduling and schedules of resources for application execution between two consecutive rescheduling points. Using large number of simulations, it is shown that the rescheduling plans developed by the algorithms can lead to large decrease in application execution times when compared to executions without rescheduling on dynamic Grid resources. The rescheduling plans generated by the algorithms are also shown to be competitive when compared to the near-optimal plans generated by brute-force methods. Of the algorithms, genetic algorithm yielded the most efficient rescheduling plans with 9-12% smaller average execution times than the other algorithms.